scholarly journals NORHA, A Novel Follicular Atresia-related Lncrna, Promotes Granulosa Cell Apoptosis via miR-183-96-182 Cluster and FoxO1 Axis

Author(s):  
Wang Yao ◽  
Zengxiang Pan ◽  
Xing Du ◽  
Jinbi Zhang ◽  
Honglin Liu ◽  
...  

Abstract BackgroundFollicular atresia has been shown to be strongly associated with low follicle utilization rate and female infertility, which are regulated by many factors such as miroRNAs (miRNAs), a class of non-coding RNAs (ncRNAs). However, little is known about long non-coding RNAs (lncRNAs), another ncRNAs, which regulate follicular atresia. ResultsA total of 94 differentially expressed lncRNAs, including 74 up-regulated and 20 down-regulated lncRNAs, were identified in early atretic follicles compared to healthy follicles by RNA-sequencing. We identified and characterized a non-coding RNA that was highly expressed in atretic follicles (NORHA), an intergenic lncRNA, was the most significantly elevated lncRNA in early atretic follicles. Functionally, RT-PCR,flow cytometry and western blot results showed that NORHA was associated with follicular atresia by influencing GC apoptosis. Mechanistically, bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay results showed that NORHA acted as a ‘sponge’, which directly bound to the miR-183-96-182 cluster, and therefore resisted their targeting inhibition of FoxO1, the major sensor and effector of oxidative stress. Furthermore, NORHA and oxidative stress synergistically induced GC apoptosis. ConclusionsWe provide a comprehensive perspective of lncRNAs regulation of follicular atresia, and demonstrate that NORHA, a novel lncRNA related to follicular atresia, induces GC apoptosis through affecting the miR-183-96-182 cluster and Foxo1 axis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Yao ◽  
Zengxiang Pan ◽  
Xing Du ◽  
Jinbi Zhang ◽  
Honglin Liu ◽  
...  

Abstract Background Follicular atresia has been shown to be strongly associated with a low follicle utilization rate and female infertility, which are regulated by many factors such as microRNAs (miRNAs), which constitute a class of noncoding RNAs (ncRNAs). However, little is known about long noncoding RNAs (lncRNAs), which constitute another ncRNA family that regulate follicular atresia. Results A total of 77 differentially expressed lncRNAs, including 67 upregulated and 10 downregulated lncRNAs, were identified in early atretic follicles compared to healthy follicles by RNA-Sequencing. We characterized a noncoding RNA that was highly expressed in atretic follicles (NORHA). As an intergenic lncRNA, NORHA was one of the upregulated lncRNAs identified in the atretic follicles. To determine NORHA function, RT-PCR, flow cytometry and western blotting were performed, and the results showed that NORHA was involved in follicular atresia by influencing GC apoptosis with or without oxidative stress. To determine the mechanism of action, bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay were performed, and the results showed that NORHA acted as a ‘sponge’, that directly bound to the miR-183-96-182 cluster, and thus prevented its targeted inhibition of FoxO1, a major sensor and effector of oxidative stress. Conclusions We provide a comprehensive perspective of lncRNA regulation of follicular atresia, and demonstrate that NORHA, a novel lncRNA related to follicular atresia, induces GC apoptosis by influencing the activities of the miR-183-96-182 cluster and FoxO1 axis.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Naseratun Nessa ◽  
Miyuki Kobara ◽  
Hiroe Toba ◽  
Tetsuya Adachi ◽  
Toshiro Yamamoto ◽  
...  

Introduction: Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. Objective: The present study investigated the effects of febuxostat on periodontitis in a rat model. Methods: Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. Results: In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. Conclusion: Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.


Author(s):  
Lei Zhang ◽  
Qiulai Li ◽  
Yanxia Chen ◽  
Qiao Zhu

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) could induce endothelial injury and played a vital role in the progression and development of atherosclerosis. This study aimed to investigate the role of Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in ox-LDL-induced human umbilical vascular endothelial cells (HUVECs) injury and the potential mechanisms. METHODS: Cell proliferation and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry assay, respectively. The levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were detected by corresponding detection kits, respectively. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of OIP5-AS1 or microRNA-30c-5p (miR-30c-5p) in HUVECs. Binding between OIP5-AS1 and miR-30c-5p was predicted through bioinformatics analysis and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Western blot was used to analyze p-IκB, IκB, p-p65 and p65 levels. RESULTS: In HUVECs, exposure to ox-LDL led to a decrease in cell viability and an increase in LDH release and apoptosis with concomitant enhancement of oxidative stress, as evidenced by increased ROS and MDA generation, as well as decreased SOD activity and NO levels, while OIP5-AS1 knockdown or miR-30c-5p upregulation could rescue these effects above. Mechanically, OIP5-AS1 functioned as a sponge of miR-30c-5p. OIP5-AS1-induced injury and apoptosis, oxidative stress and activation of NF-κB pathway were reversed by miR-30c-5p in ox-LDL-treated HUVECs. CONCLUSION: OIP5-AS1 contributed to ox-LDL-treated HUVECs injury by activation of NF-κB pathway via miR-30c-5p.


2019 ◽  
Vol 20 (21) ◽  
pp. 5423 ◽  
Author(s):  
Mirza Muhammad Fahd Qadir ◽  
Dagmar Klein ◽  
Silvia Álvarez-Cubela ◽  
Juan Domínguez-Bendala ◽  
Ricardo Luis Pastori

Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.


2018 ◽  
Vol 48 (1) ◽  
pp. 339-347 ◽  
Author(s):  
Weiwei Wang ◽  
Lei Yang ◽  
Dan Zhang ◽  
Chao Gao ◽  
Jie Wu ◽  
...  

Background/Aims: Postmenopausal osteoporosis is a common disease associated with estrogen deficiency leading to bone loss and bone tissue changes. The resultant bone fragility and increased risk of fracture has serious adverse effects on health and quality of life of the elderly, making it an important health issue. MicroRNA-218 (miR-218) is closely related to the development of osteoporosis. In this study, we investigated the regulatory mechanisms of miR-218 in osteoclastogenesis. Methods: We investigated miR-218 levels on differentiation of RAW 264.7 cells into osteoclasts compared with normal cells. Next, RAW 264.7 cells were transfected with miR-218 mimics or inhibitors to study the role of miR-218 in osteoclastogenic differentiation. Tartrate-resistant acid phosphatase (TRAP) staining was performed to determine osteoclastogenic differentiation. Bioinformatics analysis and luciferase reporter assay were used to identify and validate miR-218 target genes. Results: miR-218 was downregulated following RAW 264.7 cell differentiation into osteoclasts. miR-218 overexpression attenuated osteoclast differentiation, whereas low miR-218 expression promoted it as demonstrated by increased expression of osteoclast-specific genes and TRAP staining. Bioinformatics analysis and the luciferase reporter assay showed that tumor necrosis factor receptor 1 (TNFR1), a cell membrane receptor of TNF (TNF is an activator of nuclear factor-κB [NF-κB]), is a direct target of miR-218. Conclusions: Our findings indicate that miR-218 regulates osteoclastogenic differentiation negatively by repressing NF-κB signaling by targeting TNFR1, suggesting that targeting miR-218 may be a therapeutic approach in postmenopausal osteoporosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihao Xu ◽  
Dapeng Dong ◽  
Xiaofei Chen ◽  
Huaqiong Huang ◽  
Shenglan Wen

It is widely reported that miR-381 is dysregulated in various tumors. However, the specific role of miR-381 in respiratory infections has not been reported. To probe this role, A549 cells were pretreated with 1 μg/mL LPS for 24 h. The level of miR-381 was detected using RT-qPCR. The expression of proinflammatory cytokines was determined using an ELISA kit and western blotting. Bioinformatics analysis was used to predict the target genes of miR-381, and a luciferase reporter assay was used to validate the expression of the target genes. miR-381 expression was increased in A549 cells treated with LPS, which is a ligand of TLRs. Further study revealed that the overexpression of miR-381 increased the activity of NF-κB signaling, thereby increasing the expression of IL-6, TNFα, and COX-2. Further study revealed that IκBα was a target gene of miR-381. The upregulation of miR-381 under LPS stimulation contributes to respiratory infections mainly by targeting IκBα.


2021 ◽  
Author(s):  
Xiuheng Xue ◽  
Chunhuan Ren ◽  
Luping Wang ◽  
Mengzhu Xu Xu ◽  
Caiyun Fan ◽  
...  

Abstract Background: As global temperatures rise, heat stress has become one of the major environmental stressors in the poultry industry. The purpose of the study was to investigate the effects of heat stress on immune function and oxidative stress, and further reveal the possible mechanisms of oxidative stress induced by heat stress for thymus and spleen of broilers. Methods: At the age of 28 days, thirty broilers were randomly divided into the control group (25 ± 2°C; 24 h/day) and the heat stress group (36 ± 2°C; 8 h/day); the experience was lasted for 1 week. At the end of the experience, the broilers per group were respectively euthanized and collected some samples, then to be analyzed. Results: The results showed that the levels of heat shock proteins 70 (HSP70,P< 0.01), corticosterone (CORT,P< 0.01), the contents of malondialdehyde (MDA, P< 0.05), interleukin-6 (IL-6, P< 0.01) and tumor necrosis factor-alpha (TNF-α, P< 0.01) in serum were significantly higher in heat stress group than that in the control group; The activities of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) and contents of glutathione (GSH) in heat stress group significantly reduced (P< 0.05) in serum. Compared with the control group, the birds subjected to heat stress reduced the weight (P< 0.01) and the indices of thymus (P< 0.01), the activities of T-AOC (P< 0.01) and SOD (P< 0.05) of spleen, and levels of IL-10 (P< 0.05) and the GSH-PX (P< 0.05) in thymus and spleen, and increased the IL-6 content of thymus (P< 0.05), the MDA content (P< 0.01), and the reactive oxygen species (ROS) levels (P< 0.01) in thymus and spleen. Moreover, the expression of immunoglobulin G (IgG) gene in thymus and spleen of heat stressed broiler significantly increased by reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR (qRT-PCR; P< 0.05); However, the expression of immunoglobulin M (IgM) gene in spleen significantly increased (P< 0.05), and had no significant difference (P> 0.05) in thymus of heat-stressed broiler. Furthermore, the relative expression of ATP binding cassette subfamily G member 2 (ABCG2) in thymus and spleen (P< 0.05), sodium dependent vitamin C transporter-2 (SVCT-2, P< 0.01) and mitochondria calcium uniporter (MCU, P< 0.01) mRNA in thymus of heat stressed broilers significantly increased; and the expression of ABCG2 (P< 0.05), SVCT-2 (P< 0.01) and MCU (P< 0.01) protein of thymus and spleen in the heat-stressed broiler increased significantly compared with the control group. Conclusions: In summary, the study confirmed that heat stress caused oxidative stress to immune organs of broilers, further reduced immune function. Moreover, the potential mechanisms of heat stress-induced oxidative stress for thymus and spleen was further reveal in broilers.


Author(s):  
Yang Sun ◽  
Jun-Gong Jin ◽  
Wei-Yang Mi ◽  
Hao-Wu ◽  
Shi-Rong Zhang ◽  
...  

Glioma is the most common and lethal malignant intracranial tumor. Long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in the tumorigenesis of glioma. However, the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in glioma genesis is still unknown. The purpose of this study was to investigate the underlying function of UCA1 on glioma genesis. The results demonstrated that UCA1 was upregulated in glioma tissue and indicated a poor prognosis. UCA1 knockdown induced by si-UCA1 significantly suppressed the proliferative, migrative, and invasive activities of glioma cell lines (U87 and U251). Bioinformatics analysis and luciferase reporter assay verified the complementary binding within UCA1 and miR-122 at the 3-UTR. Functional experiments revealed that UCA1 acted as an miR-122 sponge to modulate glioma cell proliferation, migration, and invasion via downregulation of miR-122. Overall, the present study demonstrated that lncRNA UCA1 acts as an endogenous sponge of miR-122 to promote glioma cell proliferation, migration, and invasion, which provides a novel insight and therapeutic target in the tumorigenesis of glioma.


2021 ◽  
Author(s):  
Zhiping Chen ◽  
Tianyu Zhong ◽  
Tao Li ◽  
Jinghua Zhong ◽  
Yang Tang ◽  
...  

The gastric cancer (GC) patients commonly have a poor prognosis due to its invasiveness and distant metastasis. Growing evidence proved that aberrant long non-coding RNAs (lncRNAs) expression contributes to tumor development and progression. LncRNA SNHG15 has been reported to be involved in many different kinds of cancer, while its role in GC remains unclear. In the present study, we found that SNHG15 was up-regulated in GC tissues and cell lines. Silencing SNHG15 suppressed proliferation migration, invasion and promoted apoptosis of AGS cells. More importantly, microRNA-506-5p (miR-506-5p) was predicted as a direct target of SNHG15 by binding its 3’-UTR and further verified using luciferase reporter assay. Meanwhile, the results of rescue experiments revealed that knockdown of miR-506-5p expression reversed the functional effects of SNHG15 silenced on cell proliferation, migration, invasion and apoptosis. In conclusion, our findings revealed that SNHG15 executed oncogenic properties in GC progression through targeting miR-506-5p, which might provide a novel target for the GC treatment.


Sign in / Sign up

Export Citation Format

Share Document