Ancient water and sanitation systems – applicability for the contemporary urban developing world

2013 ◽  
Vol 67 (5) ◽  
pp. 935-941 ◽  
Author(s):  
T. Bond ◽  
E. Roma ◽  
K. M. Foxon ◽  
M. R. Templeton ◽  
C. A. Buckley

The idea of implementing ancient water and wastewater technologies in the developing world is a persuasive one, since ancient systems had many features which would constitute sustainable and decentralised water and sanitation (WATSAN) provision in contemporary terminology. Latest figures indicate 2.6 billion people do not use improved sanitation and 1.1 billion practise open defecation, thus there is a huge need for sustainable and cost-effective WATSAN facilities, particularly in cities of the developing world. The objective of this study was to discuss and evaluate the applicability of selected ancient WATSAN systems for the contemporary developing world. Selected WATSAN systems in ancient Mesopotamia, the Indus Valley, Egypt, Greece, Rome and the Yucatan peninsula are briefly introduced and then discussed in the context of the developing world. One relevant aspect is that public latrines and baths were not only a part of daily life in ancient Rome but also a focal point for socialising. As such they would appear to represent a model of how to promote use and acceptance of modern community toilets and ablution blocks. Although public or community toilets are not classified as improved sanitation by WHO/UNICEF, this is a debatable premise since examples such as Durban, South Africa, illustrate how community toilets continue to represent a WATSAN solution for urban areas with high population density. Meanwhile, given the need for dry sanitation technologies, toilets based on the production of enriched Terra Preta soil have potential applications in urban and rural agriculture and warrant further investigation.

2010 ◽  
Vol 5 (4) ◽  
Author(s):  
Naomi Carrard ◽  
Juliet Willetts ◽  
Cynthia Mitchell ◽  
Mick Paddon ◽  
Monique Retamal

In peri-urban areas where infrastructure investments have not yet been made, there is a need to determine the most context-appropriate, fit for purpose and sustainable sanitation solutions. Decision makers must identify the optimal system scale (on the spectrum from centralized to community to cluster scale) and assess the long-term costs and socio-economic/environmental impacts associated with different options. Addressing both cost-effectiveness and sustainability are essential to ensure that institutions and communities are able to continue to bear the costs and management burden of infrastructure operation, maintenance and asset replacement. This paper describes an approach to sanitation planning currently being undertaken as a research study in Can Tho City in southern Vietnam, by the Institute for Sustainable Futures and Can Tho University in collaboration with Can Tho Water Supply and Sewerage Company. The aim of the study is to facilitate selection of the most context-appropriate, fit for purpose, cost effective and sustainable sanitation infrastructure solution. As such, the study compares a range of sanitation alternatives including centralized, decentralized (at household or cluster scale) and resource recovery options. This paper provides an overview of the study and considers aspects of the Can Tho and Vietnamese regulatory, development and institutional context that present drivers and challenges for comparison of options and selection of fit for purpose sanitation systems.


2008 ◽  
Vol 58 (3) ◽  
pp. 563-570 ◽  
Author(s):  
R. Törnqvist ◽  
A. Norström ◽  
E. Kärrman ◽  
P.-A. Malmqvist

There are billions of people around the world that lack access to safe water supply and basic sanitation, a situation which puts the affected in severe health conditions as well as economical and social despair. Many of those lacking adequate water supply and sanitation systems can be found at the fringe of the cities in so called peri-urban areas, especially in the developing world. Planning in these areas is highly complex due to challenging environmental and physical conditions, high population density and unclear institutional boundaries. This article presents a framework aiming to support the planning process for sustainable water and sanitation systems in peri-urban areas. The suggested framework is based on different available planning approaches from a review of literature and websites of organisations and companies. It consists of a recommendation of important steps in the planning process as well as supporting tools. Further, it incorporates a set of sustainability criteria important for the peri-urban context and allows for the development of site specific systems. The framework has the aim to be flexible for different planning situations, and for suiting planners with different perspectives and amount of resources.


2006 ◽  
Vol 53 (9) ◽  
pp. 1-8 ◽  
Author(s):  
N. Tambo

Modern growing society is mainly driven by oils and may be designated “petroleum civilisation”. However, the basic energy used to drive the global ecosystem is solar radiation. The amount of fossil energy consumption is minimal in the whole global energy balance. Economic growth is mainly controlled by the fossil (commercial) energy consumption rate in urban areas. Water and sanitation systems are bridging economical activities and global ecosystems. Therefore, vast amounts of high entropy solar energy should always be taken into account in the water industry. Only in urban/industrial areas where most of the GDP is earned, are commercial energy driven systems inevitably introduced with maximum effort for energy saving. A water district concept to ensure appropriate quality use with the least deterioration of the environment is proposed. In other areas, decentralised water and sanitation systems driven on soft energy paths would be recommended. A process and system designed on a high entropy energy system would be the foundation for a future urban metabolic system revolution for when oil-based energy become scarce.


2013 ◽  
Vol 3 (2) ◽  
pp. 96-105 ◽  
Author(s):  
Innocent Kamara Tumwebaze ◽  
Christoph Lüthi

Access to safe drinking water and improved sanitation is a key public health measure to prevent outbreak of diseases such as diarrhoea. We conducted a cross-sectional survey in 50 randomly selected slums of Kampala to assess the sources of water and sanitation facilities used in urban informal settlements. A total of 1,500 household respondents were interviewed. More than half (63.6%) of the respondents were using piped water for their domestic needs. The majority of the respondents (68.3%) had shared sanitation facilities and only 20% of the respondents had private ones. The factors influencing access to sanitation facilities included; household ownership, number of families sharing a toilet stand, cost of the sanitation facilities, stability of the income of household members and cleanliness of the facilities used. This paper thus provides knowledge insights on which more sustainable options for water and sanitation technologies in urban poor settlements can be based.


2019 ◽  
Vol 11 (12) ◽  
pp. 3468 ◽  
Author(s):  
Denise Silveti ◽  
Kim Andersson

Globally, peri-urban areas are experiencing rapid urbanization. Conventional infrastructure development is generally slow to catch up and the lack of basic sanitation in peri-urban areas is a constantly growing—and often overlooked—problem. There are examples where these challenges have been addressed by off-grid “productive” sanitation systems that provide opportunities for recovery and reuse of valuable waste stream resources. However, governing such systems and ensuring effective municipal policies can be challenging since the socio-economic contexts in many peri-urban areas are transforming rapidly. A comparison of two initiatives in Bolivia and South Africa offers valuable insights for introducing functional off-grid “productive” sanitation systems relying on urine-diverting dry toilets (UDDTs) in peri-urban settlements. Findings suggest that acceptance of the UDDTs by households largely rely on consistent awareness raising and capacity building, in addition to adaptation to the local needs and creating a sense of ownership over the toilet system. Changing perceptions of what constitutes an aspirational toilet, and developing services for waste management collection, seem to be crucial components for ensuring long-term use and functionality of the UDDTs. Investments and further innovations for upscaling of resource recovery systems are needed to make these systems cost-effective and logistically viable. To attract these additional investments, it will be crucial to assess the societal economic benefits of off-grid “productive” sanitation compared to centralized wastewater systems. The comparison also highlights that off-grid sanitation requires a clear division and coordination of roles and responsibilities among different authorities, in order to transcend political difficulties that emerge where these boundaries overlap. Thus, integrating clear boundaries into urban planning policies, and including informal processes in communities, play an important role in improving governance of basic services in peri-urban areas.


2006 ◽  
Vol 1 (2) ◽  
Author(s):  
E. v. Münch ◽  
G. Amy ◽  
J. F. Fesselet

This paper describes the potential of ecological sanitation (ecosan) to provide sustainable excreta disposal in emergency situations and in peri-urban areas or slums in developing countries. At the present time, pit latrines are the most common form of excreta disposal both for emergency situations and in low-income peri-urban areas or slums. Although not intended to be a long-term solution, pit latrines provided during emergencies are often used for a long time (more than six months to years). This practice is not sustainable if the area is prone to flooding or there are soil conditions that allow groundwater pollution in areas where groundwater is used for drinking water, to name but two of the main factors. We propose eight criteria for the applicability of ecosan based on analysis of three case studies representing different types of emergency situations. The two most important criteria are awareness and expertise in ecosan within the aid agencies, and availability of standardised, lightweight toilet units that are quick to assemble and easy to transport (e.g. container for faeces, and urine diversion squatting pan made of impact-resistant molded polypropylene). Such toilets could be moved to, or replicated in, other areas in need after the emergency (peri-urban areas or slums). This would provide benefits for Millennium Development Goals achievements (targets on hunger, child mortality, sanitation and slum dwellers) at lower cost than conventional sanitation systems. Costs for sanitation systems should be compared based on the entire system (toilet, transport, treatment, reuse in agriculture), using Net Present Value analysis for capital, and operating and maintenance costs.


Author(s):  
Madeline Baer

Chapter 5 provides a case study of the human rights-based approach to water policy through an analysis of the Bolivian government’s attempts to implement the human right to water and sanitation. It explores these efforts at the local and national level, through changes to investments, institutions, and policies. The analysis reveals that while Bolivia meets the minimum standard for the human right to water and sanitation in some urban areas, access to quality water is low in poor and marginalized communities. While the Bolivian government expresses a strong political will for a human rights approach and is increasing state capacity to fulfill rights, the broader criteria for the right to water and sanitation, including citizen participation and democratic decision-making, remain largely unfulfilled. This case suggests political will and state capacity might be necessary but are not sufficient to fulfill the human right to water and sanitation broadly defined.


2021 ◽  
Vol 11 (4) ◽  
pp. 1814
Author(s):  
Min Seong Kim ◽  
Sean Seungwon Lee

Drill and blast is the most cost-effective excavation method for underground construction, however, vibration and noise, induced by blasting, have been consistently reported as problems. Cut blasting has been widely employed to reduce the blast-induced problems during underground excavation. We propose that the large hole boring method using the state-of-the-art MSP (Multi-setting smart-investigation of the ground and pre-large hole boring) machine (“MSP method”) can efficiently improve vibration reduction. The MSP machine will be used to create 382 mm diameter empty holes at the tunnel cut area for this purpose. This study assessed the efficiency of the MSP method in reducing blast-induced vibration in five blasting patterns using a cylinder-cut, which is a traditional cut blasting method. The controlled blasting patterns using the MSP method demonstrated up to 72% reduction in blast-induced vibration, compared to the base case, Pattern B, where only cylinder-cut and smooth blasting method were applied. Therefore, the MSP method proves to be a promising alternative for blasting in sensitive urban areas where non-vibration excavation techniques were initially considered. Geological characteristics of 50 m beyond the excavation face can be acquired through the proposed real-time boring data monitoring system together with a borehole alignment tracking and ground exploration system. The obtained geological information will be a great help in preparing alternative designs, and scheduling of construction equipment and labour during the tunnel construction.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Ravindra Ketan Mehta ◽  
Anupama Bhat Kaul

In this work, we implemented liquid exfoliation to inkjet-print two-dimensional (2D) black phosphorous (BP) and molybdenum disulfide (MoS2) p–n heterojunctions on a standard indium tin oxide (ITO) glass substrate in a vertical architecture. We also compared the optical and electrical properties of the inkjet-printed BP layer with that of the MoS2 and the electrical properties of the mechanically exfoliated MoS2 with that of the inkjet-printed MoS2. We found significant differences in the optical characteristics of the inkjet-printed BP and MoS2 layers attributed to the differences in their underlying crystal structure. The newly demonstrated liquid exfoliated and inkjet-printed BP–MoS2 2D p–n junction was also compared with previous reports where mechanically exfoliated BP–MoS2 2D p–n junction were used. The electronic transport properties of mechanically exfoliated MoS2 membranes are typically better compared to inkjet-printed structures but inkjet printing offers a cost-effective and quicker way to fabricate heterostructures easily. In the future, the performance of inkjet-printed structures can be further improved by employing suitable contact materials, amongst other factors such as modifying the solvent chemistries. The architecture reported in this work has potential applications towards building solar cells with solution processed 2D materials in the future.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Sign in / Sign up

Export Citation Format

Share Document