scholarly journals Просветляющие покрытия на основе ZnO, полученные методом электронно-лучевого испарения

Author(s):  
Л.К. Марков ◽  
А.С. Павлюченко ◽  
И.П. Смирнова

In this work, research was carried out to analyze the possibility to fabricate nanostructured antireflection coatings based on ZnO. The dependence of structural features of the film on the substrate heating temperature during deposition of an aluminum-doped zinc oxide (AZO) has been studied. It is shown that it is impossible to obtain the required structural properties of the film by changing one parameter, the substrate temperature during deposition of the material, in the range of 20 – 600 °C. For this purpose, an approach has been suggested, which consists in preliminary deposition of a nanometer-thick Sn layer with subsequent substrate heating up to the temperature of deposition of the main material layer. The optimization of coating deposition conditions led to the fabrication of a medium consisting of many whiskers with transverse dimensions of tens of nanometers and a length of hundreds of nanometers, which are oriented mainly perpendicular to the substrate. It is shown that the gradient nature of a change in the material density, and, hence, in the effective refractive index in the direction perpendicular to the substrate plane, provides antireflection properties of the coating over a wide range of wavelengths as well as in different directions of light propagation.

2019 ◽  
Vol 26 (10) ◽  
pp. 743-750 ◽  
Author(s):  
Remya Radha ◽  
Sathyanarayana N. Gummadi

Background:pH is one of the decisive macromolecular properties of proteins that significantly affects enzyme structure, stability and reaction rate. Change in pH may protonate or deprotonate the side group of aminoacid residues in the protein, thereby resulting in changes in chemical and structural features. Hence studies on the kinetics of enzyme deactivation by pH are important for assessing the bio-functionality of industrial enzymes. L-asparaginase is one such important enzyme that has potent applications in cancer therapy and food industry.Objective:The objective of the study is to understand and analyze the influence of pH on deactivation and stability of Vibrio cholerae L-asparaginase.Methods:Kinetic studies were conducted to analyze the effect of pH on stability and deactivation of Vibrio cholerae L-asparaginase. Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) studies have been carried out to understand the pH-dependent conformational changes in the secondary structure of V. cholerae L-asparaginase.Results:The enzyme was found to be least stable at extreme acidic conditions (pH< 4.5) and exhibited a gradual increase in melting temperature from 40 to 81 °C within pH range of 4.0 to 7.0. Thermodynamic properties of protein were estimated and at pH 7.0 the protein exhibited ΔG37of 26.31 kcal mole-1, ΔH of 204.27 kcal mole-1 and ΔS of 574.06 cal mole-1 K-1.Conclusion:The stability and thermodynamic analysis revealed that V. cholerae L-asparaginase was highly stable over a wide range of pH, with the highest stability in the pH range of 5.0–7.0.


2020 ◽  
Vol 09 ◽  
Author(s):  
Minita Ojha ◽  
R. K. Bansal

Background: During the last two decades, horizon of research in the field of Nitrogen Heterocyclic Carbenes (NHC) has widened remarkably. NHCs have emerged as ubiquitous species having applications in a broad range of fields, including organocatalysis and organometallic chemistry. The NHC-induced non-asymmetric catalysis has turned out to be a really fruitful area of research in recent years. Methods: By manipulating structural features and selecting appropriate substituent groups, it has been possible to control the kinetic and thermodynamic stability of a wide range of NHCs, which can be tolerant to a variety of functional groups and can be used under mild conditions. NHCs are produced by different methods, such as deprotonation of Nalkylhetrocyclic salt, transmetallation, decarboxylation and electrochemical reduction. Results: The NHCs have been used successfully as catalysts for a wide range of reactions making a large number of building blocks and other useful compounds accessible. Some of these reactions are: benzoin condensation, Stetter reaction, Michael reaction, esterification, activation of esters, activation of isocyanides, polymerization, different cycloaddition reactions, isomerization, etc. The present review includes all these examples published during the last 10 years, i.e. from 2010 till date. Conclusion: The NHCs have emerged as versatile and powerful organocatalysts in synthetic organic chemistry. They provide the synthetic strategy which does not burden the environment with metal pollutants and thus fit in the Green Chemistry.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


1992 ◽  
Vol 277 ◽  
Author(s):  
Geoffrey A. Ozin ◽  
Carol L. Bowes ◽  
Mark R. Steele

ABSTRACTVarious MOCVD (metal-organic chemical vapour deposition) type precursors and their self-assembled semiconductor nanocluster products [1] have been investigated in zeolite Y hosts. From analysis of in situ observations (FTIR, UV-vis reflectance, Mössbauer, MAS-NMR) of the reaction sequences and structural features of the precursors and products (EXAFS and Rietveld refinement of powder XRD data) the zeolite is viewed as providing a macrospheroidal, multidendate coordination environment towards encapsulated guests. By thinking about the α- and β-cages of the zeolite Y host effectively as a zeolate ligand composed of interconnected aluminosilicate “crown ether-like” building blocks, the materials chemist is able to better understand and exploit the reactivity and coordination properties of the zeolite internal surface for the anchoring and self-assembly of a wide range of encapsulated guests. This approach helps with the design of synthetic strategies for creating novel guest-host inclusion compounds having possible applications in areas of materials science such as nonlinear optics, quantum electronics, and size/shape selective catalysis.


2013 ◽  
Vol 11 (11) ◽  
pp. 1860-1873 ◽  
Author(s):  
Magdalena Nowacka ◽  
Łukasz Klapiszewski ◽  
Małgorzata Norman ◽  
Teofil Jesionowski

AbstractAdvanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional.


Author(s):  
Берик Картанбаевич Саяхов ◽  
Александр Геннадьевич Дидух ◽  
Гульнара Амангельдиевна Габсаттарова ◽  
Марат Давлетович Насибулин ◽  
Жасулан Канатович Наурузбеков

На начальных участках магистрального нефтепровода Узень - Атырау - Самара формируются партии низкозастывающих бузачинских и высокозастывающих мангышлакских нефтей. По маршруту транспортировки осуществляются дополнительные подкачки нефтей с различными физико-химическими и реологическими характеристиками, что может оказывать существенное влияние на свойства перекачиваемых нефтесмесей. Цель настоящей работы - исследование физико-химических и реологических свойств бузачинской и мангышлакской нефтесмесей на маршруте поставки Узень - Атырау, а также диапазона и причин изменений характеристик бузачинской нефти (основной в компонентном составе нефтесмесей, перекачиваемых по нефтепроводу Узень - Атырау - Самара). По результатам исследований установлено, что свойства мангышлакской нефтесмеси изменяются в незначительных пределах. Для бузачинской нефтесмеси свойственна нестабильность реологических параметров, которые могут изменяться в широком диапазоне в результате путевой подкачки на различных участках нефтепровода. Колебания реологических параметров наиболее показательных проб партий бузачинской нефтесмеси рекомендуется учитывать для решения задач повышения текучести высоковязких нефтей и оптимизации технологических режимов работы трубопроводов, по которым осуществляется перекачка таких нефтей. Методами газохроматографического анализа молекулярно-массового распределения тугоплавких парафинов и поляризационной микроскопии определена температура нагрева бузачинской и мангышлакской нефтесмесей, оптимальная для ввода депрессорной присадки. At the initial sections of the Uzen - Atyrau - Samara main oil pipeline, batches of low pour point Buzachinsky and high pour point Mangyshlak oils are formed. Additional pumping of oils with different physical, chemical and rheological characteristics is carried out along the transportation route, which can have a significant effect on the properties of the pumped oil mixtures. The purpose of this study is to examine the physical, chemical and rheological properties of Buzachi and Mangyshlak oil mixtures on the Uzen - Atyrau supply route, as well as the range and causes of changes in the characteristics of Buzachinsky oil (the main oil mixture in the blend composition pumped through the Uzen - Atyrau - Samara pipeline). According to the research results, it was found that the properties of the Mangyshlak oil mixture vary within insignificant limits. The Buzachinsky oil mixture is characterized by instability of rheological parameters, which can vary in a wide range as a result of route pumping at different pipeline sections. Fluctuations of the rheological parameters of the most indicative samples of batches of the Buzachinsky oil mixture are recommended to be taken into account in order to increase the fluidity of high-viscosity oils and optimize the process modes of operation of pipelines through which such oils are pumped. Using the methods of gas chromatographic analysis of the molecular weight distribution of high-melting-point paraffins, as well as polarization microscopy, the optimal heating temperature for the introduction of a pour point depressant into the Buzachinsky and Mangyshlak oil mixtures has been determined.


2021 ◽  
Vol 56 ◽  
pp. 97-107
Author(s):  
M. S. Zayats ◽  

A low-temperature (substrate heating temperature up to 400 °C) ion-plasma technology for the formation of nanostructured AlN and BN films by the method of high-frequency reactive magnetron sputtering of the corresponding targets has been developed (the modernized installation "Cathode-1M"), which has in its technological cycle the means of physical and chemical modification, which allow to purposefully control the phase composition, surface morphology, size and texture of nanocrystalline films. The possibility of using the method of high-frequency magnetron sputtering for deposition of transparent hexagonal BN films in the nanoscale state on quartz and silicon substrates is shown. Atomic force microscopy (AFM) has shown that AlN films can have an amorphous or polycrystalline surface with grain sizes of approximately 20-100 nm, with the height of the nanoparticles varying from 3 to 10 nm and the degree of surface roughness from 1 to 10 nm. It was found that the dielectric penetration of polycrystalline AlN films decreases from 10 to 3.5 at increased frequencies from 25 Hz to 1 MHz, and the peak tangent of the dielectric loss angle reaches 0.2 at 10 kHz. Such features indicate the existence of spontaneous polarization of dipoles in the obtained AlN films. Interest in dielectric properties in AlN / Si structures it is also due to the fact that there are point defects, such as nitrogen vacancies and silicon atoms, which diffuse from the silicon substrate during synthesis and play an important role in the dielectric properties of AlN during the formation of dipoles. The technology makes it possible, in a single technological cycle, to produce multilayer structures modified for specific functional tasks with specified characteristics necessary for the manufacture of modern electronics, optoelectronics and sensorics devices. It should also be noted that the technology of magnetron sputtering (installation "Cathode-1M") is highly productive, energetically efficient and environmentally friendly in comparison with other known technologies for creating semiconductor structures and allows them to be obtained with minimal changes in the technological cycle.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2021 ◽  
Vol 9 ◽  
Author(s):  
Erik Hembre ◽  
Julie V. Early ◽  
Joshua Odingo ◽  
Catherine Shelton ◽  
Olena Anoshchenko ◽  
...  

The identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against Mycobacterium tuberculosis. Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC90 is the concentration at which M. tuberculosis growth is inhibited by 90% (IC90 &lt; 5 μM). We conducted a structure–activity relationship investigation for this series. We designed and synthesized an additional 44 molecules and tested all analogs for activity against M. tuberculosis and cytotoxicity against the HepG2 cell line. Substitution at the 5-position of the pyrimidinone with a wide range of groups, including branched and straight chain alkyl and benzyl groups, resulted in active molecules. Trifluoromethyl was the preferred group at the 6-position, but phenyl and benzyl groups were tolerated. The 2-pyridyl group was required for activity; substitution on the 5-position of the pyridyl ring was tolerated but not on the 6-position. Active molecules from the series demonstrated low selectivity, with cytotoxicity against eukaryotic cells being an issue. However, there were active and non-cytotoxic molecules; the most promising molecule had an MIC (IC90) of 4.9 μM with no cytotoxicity (IC50 &gt; 100 μM). The series was inactive against Gram-negative bacteria but showed good activity against Gram-positive bacteria and yeast. A representative molecule from this series showed rapid concentration-dependent bactericidal activity against replicating M. tuberculosis bacilli with ~4 log kill in &lt;7 days. Overall the biological properties were promising, if cytotoxicity could be reduced. There is scope for further medicinal chemistry optimization to improve the properties without major change in structural features.


Sign in / Sign up

Export Citation Format

Share Document