scholarly journals Effect of Nano and Bulk Nickel Oxide on Biomass and Antioxidant Enzymes Production of Fennel

2021 ◽  
Vol 41 (1) ◽  
pp. 71
Author(s):  
Hilda Besharat ◽  
Ramazan Ali Khavari-Nejad ◽  
Homa Mahmoodzadeh ◽  
Khadijeh Nejad Shahrokh Abadi

The production, growth, and physiological processes of plants respond differently to the varying concentrations of nanoparticles. Due to the increasing importance and application of nanoparticles, it is essential to determine the impact on plants physiological systems. Therefore, this study investigated the effect of different bulk and nano nickel oxide concentrations on biomass production and the enzymatic system of fennel. The experiment was carried out in a completely randomized design with the applications of 5 replications and 5 concentrations (0, 20, 100, 400, and 800 ppm) in the greenhouse of the Faculty of Science, Mashhad Branch, Islamic Azad University. This study analyzed various plants traits, including shoot and dry root weight and a few antioxidant enzymes. The results showed that root and shoot dry weight were not affected by the applied treatments. Furthermore, all applied levels of treatment significantly increased the activity of fennel leaf polyphenol oxidase compared to the control. The bulk treatment at 800 ppm was exempted, where the application of bulk nickel oxide and nanoparticles decreased dehydrogenase enzyme activity. In addition, the activity of guaiacol peroxidase increased under all levels of treatments except 100 ppm nanoparticles. The highest amount of phenylalanine ammonia-lyase activity was obtained under 20 ppm treatment with a 61.98% increase compared to the control method. Furthermore, nickel oxide treatments also increased MDA. The results showed that nanomaterials' toxicity, caused oxidative stress in this plant, and the differences in MDA content of leaves explained the higher toxicity of NiO nanoparticles than bulk form. Moreover, higher activity of leaf antioxidative enzymes in bulk NiO2 treatments, especially Guaiacol Peroxidase, explained the plant's higher resistance to oxidative stress.

2017 ◽  
Vol 68 (6) ◽  
pp. 1381-1383
Author(s):  
Allia Sindilar ◽  
Carmen Lacramioara Zamfir ◽  
Eusebiu Viorel Sindilar ◽  
Alin Constantin Pinzariu ◽  
Eduard Crauciuc ◽  
...  

Endometriosis is described as a gynecological disorder characterized by the presence of endometrial tissue outside the uterus; extensively explored because of its increasing incidency, with an indubitable diagnostic only after invasive surgery, with no efficient treatment, it has still many aspects to be elucidated. A growing body of facts sustain oxidative stress as a crucial factor between the numerous incriminated factors implicated in endometriosis ethiopathogeny. Reactive oxygen species(ROS) act to decline reproductive function. Our study intends to determine if an experimental model of endometriosis may be useful to assess the impact of oxidative stress on endometrial cells; we have used a murine model of 18 adult Wistar female rats. A fragment from their left uterine horn was implanted in the abdominal wall. After 4 weeks, a laparatomy was performed, 5 endometrial implants were removed, followed by biochemical tissue assay of superoxide dismutase(SOD) and catalase(CAT). At the end of the experiment, the rats were sacrificed, the implants were removed for histopathological exam and biochemical assay of antioxidant enzymes. The results revealed decreased levels of antioxidant enzymes, pointing on significant oxidative stress involvement.


2019 ◽  
Vol 46 (No. 2) ◽  
pp. 98-106 ◽  
Author(s):  
Filippos Bantis ◽  
Kalliopi Radoglou

The effect of light-emitting diodes (LED) with broad radiation spectra on developmental, physiological, and phytochemical characteristics of Greek sage (Salvia fruticosa L.) seedlings was assessed. Fluorescent (FL – control) tubes and four LED lights [AP67 (moderate blue, red and far-red), L20AP67 (moderate blue, red and far-red, high green), AP673L (moderate blue, high red) and NS1 (high blue and green, low red, high red : far-red, 1% ultraviolet)] were used in a growth chamber. Seedlings grown under FL, L20AP67 and AP673L exhibited the best morphological and developmental characteristics. FL led to inferior root biomass formation compared to all LEDs. AP67 promoted greater root-to-shoot dry weight ratio and dry-to-fresh overground and root weight ratios, but induced the least morphological and developmental characteristics. NS1 performed well regarding the root biomass production. Total phenolic content and the root growth capacity were not significantly affected. The present study demonstrates that L20AP67 and AP673L LEDs performed equally to FL light regarding the developmental characteristics. AP67 and NS1 may have the potential to be used for compact seedling production.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 15-24
Author(s):  
Magdalena Matić ◽  
◽  
Rosemary Vuković ◽  
Karolina Vrandečić ◽  
Ivna Štolfa Čamagajevac ◽  
...  

During cultivation, wheat is exposed to several abiotic and/or biotic stress conditions that may adversely impact the wheat yield and quality. The impact of abiotic stress caused by nitrogen deficiency and biotic stress caused by phytopathogenic fungus Fusarium culmorum on biomarkers of oxidative stress in the flag leaf of nine winter wheat varieties (Ficko, U-1, Galloper, BC Mandica, BC Opsesija, Ingenio, Isengrain, Felix, and Bezostaya-1) was analyzed in this study. Hydrogen peroxide concentration and lipid peroxidation level were measured as indicators of oxidative stress, while the antioxidant response was determined by measuring the concentration of phenolic compounds and activities of antioxidant enzymes. Wheat variety and nitrogen treatment had a significant effect on all examined biomarkers of oxidative stress in the flag leaf, while the impact of Fusarium treatment was less pronounced. The most significant impact on the measured stress biomarkers had a low nitrogen level, which mainly increased hydrogen peroxide concentration and lipid peroxidation level and decreased activities of antioxidant enzymes in most varieties. The obtained results were discussed and compared with the previous study in which biochemical analyzes were performed on the wheat spike. There was no significant strong correlation between flag leaf and spike response in the measured parameters, which, in addition to the variety-specific response, also indicates a tissue-specific antioxidant response.


2013 ◽  
Vol 58 (1) ◽  
pp. 31-39
Author(s):  
Mohammad Mobin

Cadmium (Cd) accumulation, oxidative damage, and nitrogen metabolism were studied in roots and leaves of 30-d-old blackgram plants [Vigna mungo (L.) Hepper], grown in a mixture of soil and compost (3:1) with different Cd concentrations. Significant reductions in both root and shoot dry weight were noted. The concentration of Cd in roots and leaves increased with increasing Cd levels. The level of lipid peroxidation elevated with a consequent increase in H2O2 content under Cd stress in both plant organs. The activity of enzymes mediating the nitrogen assimilation in roots and leaves was greatly reduced in the presence of Cd, except glutamate dehydrogenase (GDH) which showed a significant increase.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4071
Author(s):  
Yung-Fang Hsiao ◽  
Shao-Bin Cheng ◽  
Chia-Yu Lai ◽  
Hsiao-Tien Liu ◽  
Shih-Chien Huang ◽  
...  

The imbalance of high oxidative stress and low antioxidant capacities is thought to be a significant cause of the development and progression of hepatocellular carcinoma (HCC). However, the impact of oxidative stress, glutathione (GSH), and its related antioxidant enzymes on the recurrence of HCC has not been investigated. The purpose of this study was to compare the changes to oxidative stress and GSH-related antioxidant capacities before and after tumor resection in patients with HCC recurrence and non-recurrence. We also evaluated the prognostic significance of GSH and its related enzymes in HCC recurrence. This was a cross-sectional and follow-up study. Ninety-two HCC patients who were going to receive tumor resection were recruited. We followed patients’ recurrence and survival status until the end of the study, and then assigned patients into the recurrent or the non-recurrent group. The tumor recurrence rate was 52.2% during the median follow-up period of 3.0 years. Patients had significantly lower plasma malondialdehyde level, but significantly or slightly higher levels of GSH, glutathione disulfide, trolox equivalent antioxidant capacity, glutathione peroxidase (GPx), and glutathione reductase (GR) activities after tumor resection compared to the respective levels before tumor resection in both recurrent and non-recurrent groups. GSH level in HCC tissue was significantly higher than that in adjacent normal tissue in both recurrent and non-recurrent patients. Decreased plasma GPx (HR = 0.995, p = 0.01) and GR (HR = 0.98, p = 0.04) activities before tumor resection, and the increased change of GPx (post—pre-resection) (HR = 1.004, p = 0.03) activity were significantly associated with the recurrence of HCC. These findings suggest there might be a possible application of GPx or GR as therapeutic targets for reducing HCC recurrence.


2014 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Omid Younesi ◽  
Ali Moradi

AbstractThe experiment was conducted in order to study effects of seeds priming with gibberellic acid (GA3) at 0, 3, 5 and 8 mM on germination, growth and antioxidant enzymes activity in alfalfa seedlings under salinity stress (200 mM NaCl). All control seeds germinated. The rate of germinated seeds was reduced to 48% in the presence of NaCl, and increased to 76% after seeds priming with 5 mM GA3. Priming with 5 mM GA3 was also correlated with an increase of dry weight of seedlings derived from both stressed and non-stressed seeds as well as with the reduction of electrolyte leakage (EL) and malondialdehyde (MDA) level in salt stressed seedlings. The activity of superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase in primed and non-primed seeds increased in the presence of NaCl and after priming of seeds with 5 mM GA3, whereas only small effect on glutathione reductase activity in both primed and non-primed seeds was observed. The total ascorbate level was higher in both stressed and non-stressed seedlings from primed seeds. These results suggest that GA3 priming might increase the salt tolerance of alfalfa seedlings through enhancing the activities of antioxidant enzymes and reducing the membrane damage as estimated using biomarkers, EL index and MDA content.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ricksy Prematuri ◽  
Maman Turjaman ◽  
Takumi Sato ◽  
Keitaro Tawaraya

Opencast nickel mining is common in natural forests of Indonesia. However, rehabilitation of postmining degraded land is difficult. We investigated the effect of opencast nickel mining on soil chemical properties and the growth of two fast-growing tropical tree species, Falcataria moluccana and Albizia saman. Soil was collected from post-nickel mining land and a nearby natural forest. Soil pH, available phosphorus (P) concentration, total carbon (TC) and total nitrogen (TN) concentration, C/N ratio, cation exchange capacity (CEC), and exchangeable K, Na, Mg, Ca, Fe, and Ni concentrations were determined. Falcataria moluccana and A. saman were then grown in the collected soils for 15 weeks in a greenhouse. Shoot height and shoot and root dry weights of the seedlings were measured. The post--nickel mining soils TN, TC, available P, CEC, and exchangeable Ca and Na concentrations decreased by 98%, 93%, 11%, 62%, 85%, and 74%, respectively, in comparison with the natural forest soils. The pH of postmining soil was higher than natural forest soil. Shoot dry weight of F. moluccana seedlings grown in postmining soil was significantly ( P < 0.05 ) lower than that of seedlings grown in natural forest soil. However, there was no difference in shoot dry weight between A. saman seedlings grown in natural forest soil and postmining soil, as well as root dry weights of both species. The results indicate that opencast nickel mining decreased soil fertility, which subsequently inhibited the growth of F. moluccana and A. saman seedlings.


2016 ◽  
Vol 50 (6) ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba

The present study was undertaken to assess the response of common bean under drought in respect of root traits and biomass partitioning in fifteen common bean genotypes. The basal root whorl number and the number of basal roots was highest in case of WB-185 and lowest in case of SR-1, whereas, the basal root growth angle was highest in case of WB-258 and lowest in case of WB-249. Rooting depth measured as the length of longest root harvested was highest in case of WB-6 (66.2) while as lowest value was recorded for WB-112 (20.4). Dry root weight was highest in case of WB-216 (0.45) and lowest value was recorded for WB-341 (0.22). Similarly leaf biomass was highest in case of WB-6 (0.58) followed by WB-216 (0.58) and the lowest value recorded for WB-1186 (0.12). Shoot dry weight was highest for WB-6 (0.55) followed by WB-216 (0.44) and the lowest value recorded for WB-1186 (0.118). Pod dry weight was highest for WB-489 (2.28) followed by WB-216 (2.19) and the lowest value recorded for WB-83 (0.68).489. Root biomass proportion was highest for WB-195 (18.34) and lowest for WB-489 (10.00). Similarly leaf biomass to total biomass was highest in case of WB-83 (23.19) whereas lowest value was recorded for WB-1186 (7.60). Highest stem biomass proportion was recorded for Arka Anoop (19.19) and the lowest value was recorded for WB-1186 (7.591). Biomass allocation to pods was highest in case of WB-489 (69.92) followed by WB-1186 (68.69) whereas lowest value was recorded for WB-83 (45.40).


1992 ◽  
Vol 10 (4) ◽  
pp. 232-235
Author(s):  
David R. Brown ◽  
D. Joseph Eakes ◽  
Bridget K. Behe ◽  
Charles H. Gilliam

Abstract Moisture stress was compared to B-nine (daminozide) as a method of height control for annual bedding plant transplants. Three plant species, ‘Big Boy’ tomato, ‘California Wonder’ pepper and ‘Janie Gold’ marigold, were grown in 132 cm3 (8.05 in3) cell packs containing one of 2 commercial media, Fafard #3 or Pro-Mix BX. Treatments included moisture stress (MS), 2 concentrations of B-nine (2500 ppm applied twice and 5000 ppm once), and an untreated control. Method of height control and medium type had an interactive influence on height for each of the 3 species. Moisture stress tomato and marigold were shorter in the Fafard #3 medium compared to those in the Pro-Mix BX medium. Regardless of medium, MS tomato and marigold transplants were shorter or similar in size to the most effective B-nine treatment, 2500 ppm applied twice. Moisture stress and the B-nine treatments for pepper plants grown in the Fafard #3 medium reduced plant height similarly compared to the controls. However, when pepper plants were grown in the Pro-Mix BX medium, only B-nine treatments reduced plant height compared to the controls. Treatments producing short plants did not reduce node number, hence plants appeared fuller than treatments with tall plants. Shoot dry weights for MS tomato and marigold were less than those of plants receiving the other height control treatments, regardless of medium type. Plants of all 3 species grown in the Fafard #3 medium had less shoot dry weight than Pro-Mix BX plants across the 4 height control treatments.


2014 ◽  
Vol 76 ◽  
pp. 197-202
Author(s):  
S.N. Nichols ◽  
J.R. Crush

Abstract Strategies to reduce the economic and environmental costs of phosphate (P) fertiliser use in mixed pastures through plant breeding are focussed on inefficiencies in the legume component. One approach is breeding within white clover for root systems with improved P acquisition properties. Selection for root length per unit root weight (specific root length, SRL) showed that higher SRL plants could retain more biomass in the above ground fraction with decreasing soil P, whereas plants with lower SRL diverted more biomass to roots. Back cross 1 (BC1) generation interspecific hybrids between white clover and a wild relative, Trifolium uniflorum L., may possess additional root traits influencing P acquisition. In glasshouse experiments, some T. repens × T. uniflorum hybrids, back-crossed to white clover, also exhibited higher shoot dry weight than their white clover cultivar parents at low nutrient supply levels and low to intermediate soil Olsen P. This, combined with low internal P concentrations, suggests some BC1 hybrids may be more tolerant of low soil P than white clover. Differences in both P acquisition ability and internal P use efficiency may contribute to the observed yield differences. There are good prospects for delivery of new-generation clover cultivars with improved phosphate use efficiency to New Zealand farmers. Keywords: phosphorus, white clover, Trifolium uniflorum, interspecific


Sign in / Sign up

Export Citation Format

Share Document