scholarly journals Uji Aktivitas Antibakteri Ekstrak Terpurifikasi Daun Mangga Arumanis (Mangifera indica L.) dan Identifikasi Flavonoid dengan KLT

Author(s):  
Dewi Andini Kunti Mulangsri ◽  
Elya Zulfa

Arumanis mango leaves (Mangifera indica L.) has antibacterial activity and antifungal, evidently. Escherichia coli and staphylococcus aureus are opprtunistic pathogen bacteria that can cause gastrointestinal and skin infection. Purification of extract was done to eliminate the presence of ballast substances that cannot produce therapeutic effects. This study aims to acknowledge the antibacterial activity of purified mango arumanis leaves extract (PMALE) against E. coli and S. aureus, flavonoid compound content by TLC. Arumanis Mango leaves powder was extracted with 96% ethanol solvent by maceration method, followed purification the extract was done with hot water-ethylacetate solvent by liquid-liquid extraction method. Antibacterial activity test was done by agar diffusion method against E. coli and S. aureus bacteria with the same serial concentration of 6.25; 12.5; 25; 50; 75 and 100% and Thin Layer Chromatography (TLC) tests for detection flavonoid compounds, the stationary phase used silica gel 60F 254 and the mobile phase used n-hexane-ethylacetate (1:3). The results of PMALE had antibacterial activity at lower concentrations 6,25% against both of E. coli and S. aureus. PMALE had flavonoid compounds with Rf values of 0.81.

Author(s):  
K. Krishnananda Kamath ◽  
A. Shabaraya

Herbal medicine have become an item of global importance both has medicinal and economical value. Plants used for medicinal purposes long before recorded history. Many plant species have been proved to have antibacterial activity. Thus, the main objective of the study was to formulate and evaluate a poly-herbal semisolid dosage forms using ethanolic extracts of frontal leaves of T. grandis, M. indica and A. occidentale. Formulations were evaluated for its physicochemical properties like color, consistency, pH, spreadability, extrudability and the results were found satisfactory. Antibacterial activity of formulations was studied against S. aureus, E. coli and P. aeruginosa by agar well diffusion method. (E. coli, P. aeruginosa) bacteria. The order of activity was as follows: Water Soluble bases > Gel Bases > Hydrocarbon Bases. The zones of inhibition of poly herbal formulations were in between 23-28 mm which can be comparable with standard formulation 24-29 mm. Activity of the formulations may be due to the presence of alkaloids, flavanoids, phenols and tannins in the extracts. The formulations were found to be very efficacious in all the parameters.


Author(s):  
Kyoung- Sun Seo ◽  
Seong Woo Jin ◽  
Seongkyu Choi ◽  
Kyeong Won Yun

The antibacterial activity of three Cupressaceae plants (Thujaoccidentalis,ThujaorientalisandChamaecyparisobtusa) was tested against three bacteria using the agar diffusion method. The ether and ethylacetate fraction of crude methanol extract from the three plants showed potent antibacterial activity against the tested microorganisms. The result showed that Staphylococcus aureus revealed the most sensitivity among the tested bacteria. Thujaoccidentalisether fraction and Thujaorientalis hexane fraction exhibited the highest antibacterial activity against Staphylococcus aureus. E. coli was shown the highest MIC values compared to the other two tested bacteria, which indicates the lowest antibacterial activity against the bacterium. This study promises an interesting future for designing a potentially active antibacterial agent from the three Cupressaceae plants.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


2010 ◽  
Vol 7 (3) ◽  
pp. 1159-1165
Author(s):  
Baghdad Science Journal

The antimicrobial activity of ginger extracts ( cold-water, hot-water, ethanolic and essential oil ) against some of pathogenic bacteria ( Escherichia coli , Salmonella sp , Klebsiella sp , Serratia marcescens, Vibrio cholerae , Staphylococcus aureus , Streptococcus sp) was investigated using Disc diffusion method , and the results were compared with the antimicrobial activity of 12 antibiotics on the same bacteria . The results showed that the ginger extracts were more effective on gram-positive bacteria than gram-negative . V. cholerae and S. marcescens,were the most resistant bacteria to the extracts used , while highest inhibition was noticed against Streptococcus sp (28 mm) . The ethanolic extract showed the broadest antibacterial activity ( 11 to 28 mm ) , in comparison with moderate activity of essential oil , it was observed that the cold-water extract was more effective on the bacteria than hot-water extract . Ginger ethanolic extract presented higher diameter of inhibition zone for Streptococcus sp than in Ciprofloxacin , Cefotaxime , Cefalotin , Cephalexin and Cephaloridine , also it was found a similarity between the higher inhibition zones of ethanolic extract of ginger and some antibiotics for S. aureus , E. coli , Salmonella sp and Klebsiella sp . V. cholerae and S. marcescens,also highly resistant to antibiotics . Phytochemical analysis of ethanolic extract of ginger revealed the present of glycosides, terpenoids, flavonids and phenolic compounds


2021 ◽  
Vol 74 (9) ◽  
pp. 2109-2111
Author(s):  
Evheniia A. Shtaniuk ◽  
Oleksandra O. Vovk ◽  
Larisa V. Krasnikova ◽  
Yuliia I. Polyvianna ◽  
Tetiana I. Kovalenko

The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method (“well” method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


2021 ◽  
Vol 07 (06) ◽  
Author(s):  
Tulsa Devi ◽  

Antibiotic resistance has become a global concern and hence, the search for other source of antimicrobials initiated to find a way to control infections in future. The main objective of this paper is to screen Giloy (Tinospora cordifolia) for its antibacterial activity. The stem of Tinospora cordifolia is used to prepare extract for determining it’s in vitro antibacterial activity as per the agar well diffusion method. In the agar well diffusion method 100μl of 24 hr broth culture of bacteria was aseptically and evenly swabbed on Mueller Hinton agar plates. Wells of about 8 mm diameter were aseptically cut using sterile cork-borer. 100 μl of plant extracts of different concentrations were then placed into the separate wells. The plates were incubated at 37 oC for 24hr. Antimicrobial activity of the giloy was determined by measuring the diameter of zone of inhibition. The methanolic extract of Tinospora cordifolia showed 13, 11, 9 and 5 mm zone of inhibition in S. aureus cultures by using 100, 75, 50 and 25 mg/ml concentration, respectively while hot water extract of Tinospora cordifolia showed 14, 12, 10 and 8 mm zone of inhibition for S. aureus by using 100, 75, 50 and 25 mg/ml concentration, respectively and the cold extract of Tinospora cordifolia showed 10, 8, 5 and 0 mm zone of inhibition for S. aureus by using 100, 75, 50 and 25mg/ml concentration, respectively. The methanolic extract of Tinospora cordifolia indicated 12, 10, 6 and 4 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25 mg/ml concentration, respectively and the hot water extract of Tinospora cordifolia showed 16, 14, 12 and 10 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25mg/ml concentration, respectively. The cold water extract of Tinospora cordifolia showed 13, 10, 8, and 5 mm zone of inhibition in cultures of E.coli by using 100, 75, 50 and 25 mg/ml concentration, respectively. It has been observed that Tinospora cordifolia showed very promising results as indicated by the zone of inhibition of bacterial culture through agar well diffusion method that varies from few mm to few cm. This study indicates the in-vitro antibacterial effect of Giloy which needs further validation through in-vivo studies.


2021 ◽  
Vol 7 (2) ◽  
pp. 47-51
Author(s):  
Prayoga Pannindrya ◽  
Mega Safithri ◽  
Kustiariyah Tarman

Spirulina is a microalgae that has been widely used as various supplements and medicines because of its high nutritional content. The need for new antibacterial sources to solve the problem of antibiotic resistance, makes the potential of Spirulina as an antibacterial agent necessary to be researched. This study aims to analyze the antibacterial activity of ethanol extract of Spirulina platensis obtained from the Indonesian region against Staphylococcus aureus and Escherichia coli. Spirulina samples were macerated in ethanol solvent in a ratio of 1:10 (w / v). The antibacterial test used was the disc diffusion method with clindamycin positive control. Antibacterial test results showed that S. platensis in this study did not have antibacterial activity against E. coli and S. aureus.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Naheed Zafar ◽  
Bushra Uzair ◽  
Muhammad Bilal Khan Niazi ◽  
Shamaila Sajjad ◽  
Ghufrana Samin ◽  
...  

Treatment of pandrug resistant (PDR) Escherichia coli strain is the leading causative agent of bovine mastitis worldwide. Hence, becoming a potential threat to veterinary and public health. Therefore, to control the infection new nontoxic, biocompatible antimicrobial formulation with enhanced antibacterial activity is massively required. Current study was planned to synthesize chitosan coated titanium dioxide nanoparticles (CS-NPs coated TiO2). Coating was being done by chitosan nanoparticles (CS-NPs) using ionic gelation method. Aqueous solution of Moringa concanensis leaf extract was used to synthesize titanium dioxide nanoparticles (TiO2 NPs). The synthesized nanoformulations were characterized by using XRD, SEM, and FTIR. X-ray diffraction (XRD) analysis indicated the crystalline phase of TiO2 NPs and CS-NPs coated TiO2 NPs. Scanning Electron Microscopy (SEM) confirmed spherical shaped nanoparticles size of chitosan NPs ranging from 19–25 nm and TiO2 NPs 35–50 nm. Thesize of CS-NPs coated TiO2 NPs was in the range of 65–75 nm. The UV-Vis Spectra and band gap values illustrated the red shift in CS-NPs coated TiO2 NPs. Fourier transform infrared (FTIR) spectroscopy confirmed the linkages between TiO2 NPs and chitosan biopolymer, Zeta potential confirmed the stability of CS-NPs coated TiO2 NPs by showing 95 mV peak value. In-vitro antibacterial activity of CS-NPs coated TiO2 NPs and Uncoated TiO2 NPs was evaluated by disc diffusion method against PDR strain of E. coli isolated from mastitic milk samples. The antibacterial activity of all the synthesized nanoformulations were noted and highest antibacterial activity was shown by CS-NPs coated TiO2-NPs against pandrug resistant (PDR) E. coli strain with the prominent zone of inhibition of 23 mm. Morphological changes of E. coli cells after the treatment with MIC concentration (0.78 μg/ml) of CS-NPs coated TiO2 NPs were studied by transmission electron microscopy TEM showedrigorous morphological defectand has distorted the general appearance of the E. coli cells. Cytotoxicity (HepG2 cell line) and hemolytic (human blood) studies confirmed nontoxic/biocompatible nature of CS-NPs coated biologically synthesized TiO2 NPs. The results suggested that biologically synthesized and surface modified TiO2 NPs by mucoadhesive polysaccharides (e.g. chitosan) coating would be an effective and non-toxic alternative therapeutic agent to be used in livestock industry to control drug resistant veterinary pathogens.


2018 ◽  
Vol 34 (5) ◽  
pp. 2495-2501 ◽  
Author(s):  
Sarmd D. Noori ◽  
Mazin N. Mousa ◽  
Shaker A. N. Al-Jadaan

Five compounds containing (2,4,5-triphenyl triphenyl-1H-) and azetidinone (beta-lactam) moiety were synthesized. The physical data and yield of synthesized compounds were recorded, the chemical structure of prepared compounds were characterized using FT-IR, 1H-NMR and elemental analysis. The antibacterial activity was evaluated using disc diffusion method that involve tow Gram positive (staph. aureus, E. Faecalis), two Gram negative (E. coli and ‎K. pneumoniae), and one anaerobic bacteria (streptococcus. Pyogen). Different concentration of the prepared compounds has been used, and the obtained result were compared with standard (ceftazidime). Compound (5c) showed the best antibacterial activity against all bacterial species while 5a and 5e does not. Other compounds showed activity against some species.


Sign in / Sign up

Export Citation Format

Share Document