scholarly journals Effect of gamma radiation on creep behavior, hardness and microstructure of Titanium dental material

2017 ◽  
pp. 5078-5084
Author(s):  
A. El Bediwi ◽  
Eman Kashita ◽  
Salah. M .M.Salman

Effect of gamma radiation with fixed doses on creep behavior, Vickers hardness, maximum shear stress and surface roughness parameters of cp Titanium have been investigated.  Vickers hardness and maximum shear stress values of cp Titanium are decreased after irradiated at 10, 20 and 30 kGy.  Surface roughness Ra of cp Titanium varied after irradiated at 10, 20 and 30 kGy.  Stress exponent values of cp Titanium decreased after irradiated at 10, 20 and 30 kGy.  Matrix microstructure of cp Titanium changed (Intensity, broadness and position) after irradiated at 10, 20 and 30 kGy.

2017 ◽  
pp. 5062-5068
Author(s):  
A. El Bediwi ◽  
Eman Kashita ◽  
Salah. M M.Salman

In the present work, the effect of annealing on creep behavior, hardness, maximum shear stress, roughness and electrochemical corrosion parameters of commercial Co64Cr29Mo6.5A0.5 (A= C, Si, Fe, and Mn) dental alloy from Travagliato (BS) - Italy have been studied and analyzed.  Creep behavior was studied by indentation and stress exponent was determined by Mulheam-Tabor method.  The results show that, Vickers hardness of Co64Cr29Mo6.5A0.5 alloy decreased but roughness parameters varied after annealing for two hours at 700, 800 and 900 °C.  Also the corrosion resistance in 0.5M HCl of Co64Cr29Mo6.5A0.5 alloy is increased but the corrosion rate with 0.5M HCl is decreased after annealing compared to normal alloy.


Author(s):  
Yang Duo ◽  
Tang Jinyuan ◽  
Zhou Wei ◽  
Wen Yuqin

To reveal the relationship between rough tooth surface microstructure characteristics and contact performance, contact analysis is carried out based on the measured surface topography of the tooth surface of ultrasonic grinding by utilizing the elastic-plastic contact mechanics and statistical correlation analysis theory. Simple correlation analysis and partial correlation analysis are adopted for the gear three-dimensional surface roughness parameters and the maximum Mises stress and maximum shear stress. Then, the method of stepwise regression analysis and path analysis is used to construct the best fitting linear model of 3D roughness parameters and the maximum Mises stress and maximum shear stress, and the parameters’ decision coefficient is obtained. The research shows: (1) the rank of comprehensive influence factors of the maximum Mises stress is as follows: arithmetical mean height ( Sa), peak material portion ( Smr1), maximum peak height ( Sp), reduced peak height ( Spk), and minimum curvature radius and height ratio ( K), where Smr1, Spk, and K are negatively correlated with the maximum Mises stress; (2) the comprehensive influence variables of the maximum shear stress are in the order of Sa, Spk, and Vmp, among which Spk and Vmp are inversely related to the maximum shear stress.


2020 ◽  
pp. 1-3
Author(s):  
Abu Bakr El-Bediwi ◽  
◽  
Doaa Al- Ragae ◽  
Thoraya El-Helaly ◽  
◽  
...  

Aging in normal saliva for different interval times make a change in internal structure (Formed phases and started base line) of Sliver- Palladium (Ag-Pd) dental alloy. Also aging in saliva for one, two and three weeks decreased Vickers hardness value, calculated maximum shear stress (τm) and roughness parameters for Sliver- Palladium alloy. Microbiological studies show the Candida spp. stuck on Sliver- Palladium alloy surface and their growth dependent on aging times.


Author(s):  
P Sainsot

The pressure distribution generated by rough surfaces contact induces high stresses just beneath the surface. These stresses are at the origin of several failure mechanisms such as wear, crack initiation, etc. Therefore, it is important to be able to predict these stresses. This article describes an analytical model to evaluate the near surface stresses below a wavy surface. The originality of this work is to combine Herztian stresses in the general case of elliptical contacts and local stresses due to the pressure fluctuations. Furthermore, in case of wavy surfaces simple analytical solutions permit the calculation of the maximum shear stress and its location. Compared to a fully numerical method, the time of calculation is negligible; moreover, the analytical expressions give one the possibility of a better understanding of the effect of roughness parameters such as the wavelength of the asperities. Using a Fourier transform the results can be applied to rough surfaces.


2007 ◽  
Vol 18 (02) ◽  
pp. 131-155 ◽  
Author(s):  
YAN ZENG ◽  
THONG-SEE LEE ◽  
PENG YU ◽  
HONG-TONG LOW

Surface roughness exists in most microfluidic devices due to the microfabrication technique or particle adhesion. The present study has developed a numerical model based on Finite Volume Method to simulate the fluid flow and mass transfer in a flat-plate microchannel bioreactor with an array of rough elements uniformly placed on the bottom wall. Both semicircle and triangle roughness are considered to include more shapes of roughness elements. A monolayer of cells is assumed to attach to the base of the channels and consumes species from culture medium. The results show that the roughness size ratio (α) and the roughness distribution ratio (β) have direct and significant effects on fluid flow and mass transfer. The dimensionless parameters Peclet number (Pe) and Damkohler number (Da) can also influence mass transfer greatly. Although the two types of roughness have similar effects, at the same condition, the triangle roughness has larger effect on shear stress by showing higher dimensionless values at the channel base; the semicircle roughness has larger effect on mass transfer by showing lower dimensionless minimum base concentration [Formula: see text] and higher dimensionless absorption rate (Δj%). However, it is important to ensure the lower maximum shear stress and the adequate minimum species concentration for cell growth in rough channels. Hence, if the maximum shear stress and minimum concentration in rough channels can satisfy the critical conditions for cell growth, rough channels would be better than smooth channels because of their lower shear stress at the flat-bed part and higher mass transfer efficiency. The results would provide guidance on the flow and perfusion requirements to avoid shear stress damage and solute depletion or toxicity during cell culture.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


Author(s):  
Jianhang Chen ◽  
Hongbao Zhao ◽  
Fulian He ◽  
Junwen Zhang ◽  
Kangming Tao

AbstractNumerical simulation is a useful tool in investigating the loading performance of rock bolts. The cable structural elements (cableSELs) in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues. In this study, the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model. Furthermore, the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs. Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts. Based on the modified cableSELs, the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied. The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently. With the bolt diameter increasing, the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour. Moreover, after the rock bolt was loaded, the position where the maximum shear stress occurred was variable. Specifically, with the continuous loading, it shifted from the rock bolt loaded end to the other end.


2011 ◽  
Vol 189-193 ◽  
pp. 1538-1542
Author(s):  
Li Xiao Jia ◽  
Yong Zhen Zhang ◽  
Yong Ping Niu ◽  
San Ming Du ◽  
Jian Li

In order to decrease accidents of slips and falls, COFs of rubber samples with different surface roughness were measured by Brungraber Mark II. And the correlation coefficients between roughness parameters and COF were calculated. The rusults have shown that the COF increases with surface roughness and the correlation coefficient between Sq and COF is highest. In general, almost all the roughness parameters used in the study have high correlation with COF. Parameters had the highest correlation with COF depends on the materials used and test conditions.


Sign in / Sign up

Export Citation Format

Share Document