scholarly journals THE EFFECT OF CHITOSAN ON GENE EXPRESSION, SOME MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF SWEET BASIL (Ocimum basilicum L.) UNDER SALINITY STRESS

2020 ◽  
Vol 19 (4) ◽  
pp. 21-30
Author(s):  
Nastaran Rashidi ◽  
Ramezan Ali Khavari-Nejad ◽  
Parvin Ramak ◽  
Sara Saadatmand

Sweet basil is an important medicinal plant belonging to Lamiaceae family. In this plant, Phenylpropanoid pathway possesses some enzymes involving in generating suitable essential oil constituents. The main purpose of conducting this study was to investigate the effects of chitosan on sweet basil’s growth and physiological parameters as well as gene expression subjected to salinity stress. After employing a foliar-spray of chitosan at 0 (as control) and 0.2 gl–1, the plants were subjected to salinity treatments at 0, 25, 50, 100, and 150 mM NaCl. The results of this research revealed that chitosan, compared to the controls, improved growth parameters under stressed or non-stressed conditions. In this regard, chitosan increased protein and chlorophyll contents as well as the expression of PAL and COVMT genes leading to an increase in phenolic compounds. To sum up, chitosan improved sweet basil tolerance to salinity through influencing the genes involved in the pathway of phenylpropanoid so as to produce secondary metabolites.

2021 ◽  
Vol 13 (8) ◽  
pp. 4547
Author(s):  
Mohamed E. El-Sharnouby ◽  
Metwally M. Montaser ◽  
Sliai M. Abdallah

The flower industry depends on oil and fragrance, which is addressed in the current work. Different concentrations of NaCl (0, 250, 500, 1000, and 1500 ppm) were applied to Taif rose plants (Rosa damascena var. trigintipetala Dieck) to evaluate their effects on growth and essential oil content. Results clearly indicated the highest survival percentage (98.3%) was seen in untreated plants compared to plants under salinity stress. Moreover, increasing the NaCl levels induced an adverse effect on the growth parameters of Taif rose plants, while some essential oil contents were increased to the maximum degree of their tolerance to salinity stress. The extracted essential oils were analyzed using GC/MS. The essential oils of Taif rose plants treated with 500 ppm NaCl recorded the highest values of citronellol, geraniol and phenylethyl alcohol contents (16.56, 8.67 and 9.87%), respectively. NaCl at 250 ppm produced the highest values of heneicosane (13.12%), and then decreased to the lowest value (7.79%) with the increase of NaCl to 1500 NaCl, compared to the control and other NaCl levels. The current results could highlight the impact of salinity stress on Rosa damascena Miller var. trigintipetala Dieck for better economic and industrial applications.


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Asma Al-Huqail ◽  
Rehab M. El-Dakak ◽  
Marwa Nme Sanad ◽  
Reem H. Badr ◽  
Mohamed M. Ibrahim ◽  
...  

The effects of climate temperature and water stress on growth and several stress markers were investigated in sweet basil plants. Some growth parameters (shoot length and number of leaves) and photosynthetic chlorophyll contents were determined every two days during plant growth, and foliage leaf material was collected after 15 and 21 days of treatment. Both climate temperature and water stress inhibited sweet basil plant growth; especially, total chlorophyll levels were decreased significantly in response to high-temperature treatments. Under strong stresses, basil plants induced the synthesis and accumulation of glycine betaine (GB) as a secondary osmolyte, although at less content when compared with the proline content under the same stress conditions. Proline concentrations particularly increased in leaves of both basil stressed plants, accomplishing levels high enough to play a crucial role in cellular osmoregulation adjustment. Stress-induced accumulation of these antioxidant compounds was detected in sweet basil. Therefore, it appears that sweet basil-treated plants are able to synthesize antioxidant compounds under strong stress conditions. On the other hand, total sugar concentrations decreased in stress-treated basil plants. Both temperature and water stress treatments caused oxidative stress in the treated plants, as indicated by a significant increment in malondialdehyde (MDA) concentrations. An increase in total phenolic and flavonoid concentrations in response to water stress and a highly significant decrease in carotenoid concentrations in basil leaves were observed; flavonoids also increased under high climate temperature conditions.


2015 ◽  
Vol 46 (4) ◽  
pp. 137-144 ◽  
Author(s):  
H. Khalid ◽  
M. Kumari ◽  
A. Grover ◽  
M. Nasim

Abstract The ability of Camelina sativa to withstand salinity stress in vitro by adding NaCl (0, 25, 50, 75, 100, 125, 150, 175, 200mM) in Murashige and Skoog basal medium was studied. Performance of the plants was measured in terms of various growth parameters and physiological and biochemical tests performed on fully grown plants. The germination capacity, cotyledon unfolding and first true leaf emergence was reduced by 30.6, 17.3, and 28.8%, respectively in 200mM salt treatment with respect to control. The plant height, relative water content, and plant water content were decreased by 85.4, 10.8, and 9.8%, respectively, in stressed plants with respect to control. A decrease in chlorophyll a and b and total chlorophyll contents (by 81.3%), as well as of protein content was registered. Electrical conductivity increased by 52.8% in stressed plants over control, as expected. Other stress indicators like guiacol peroxidase activity and malondialdehyde also increased with respect to control. At salt concentrations lower than 200mM, no clear cut retardation effects were seen. Thus, the present study opens up the scope of further assessment of survivability of camelina in salt contaminated soils.


2021 ◽  
Vol 5 (4) ◽  
pp. 949-957
Author(s):  
Çiğdem Alev ÖZEL ◽  
Siti MAESAROH

The species belonging to genus Indigofera with high nutritional value and tolerance against abiotic stresses are widely distributed in the tropics to the subtropic areas world over. In this study, two years old stored seeds of I. zollingeriana, a potential forage used in Indonesia, were evaluated for their tolerance to salinity stress. In the first step, the morphology and anatomy of I. zollingeriana seedlings under in vitro salinity stress level of 20-120 mM NaCl were investigated after 14 days. In the second step, the 3 days old seedlings were transferred to several concentrations of NaCl (140-300 mM) to estimate Ld50 (lethal dose). Several concentrations of gibberalic acid (GA3) were applied to the previous estimated Ld50 (228 mM NaCl) medium for alleviating seedlings damage. It was estimated that the increasing concentration of NaCl caused reduction in the evaluated plant growth parameters and changed anatomy of the root and stem cross sections. The 100% mortality of the seedlings was noted after4 weeks on the medium containing 300 mM NaCl. Treatment of seedlings with  <0.25 mg L-1 GA3 +228 mM NaCl (Ld50)   in the culture medium was effective to  reduce root damage for 4 weeks.   Treatment of seedlings with >2.5 mg L-1 GA3 + 228 mM NaCl (Ld50) showed adverse effects in controlling damage by necrosis and blackening of roots and stems.


2018 ◽  
Vol 8 ◽  
pp. 1415-1423 ◽  
Author(s):  
Afnan Freije

The effect of foliar ALA application on the internal ALA concentration in tomato plants grown in soil containing high levels of NaCl  was investigated. Six week old plants were treated with 100, 50, and 25 mmol/L NaCl on a weekly basis and they were simultaneously treated with 5-ALA at a concentration of 5%  by foliar spray. The effect of foliar ALA application on plant growth, chlorophyll contents and internal ALA concentration was studied. The internal ALA shoot concentrations ranged between 27.50±2.12 and 34.35±1.48 µg g-1 dry weight with no significant difference (p<0.05) recorded between plants treated with NaCl alone and those treated with both NaCl and ALA. The concentrations of chlorophyll a and b were elevated only in tomato plants treated with NaCl and ALA, whereas their levels decreased in plants treated with NaCl only. An adverse significant effect (p<0.05) of salinity stress was recorded on plants length, number of leaves, shoot and root fresh and dry weight. However, no significant difference  (p<0.05) was observed in plants treated with  NaCl alone with those treated with  NaCl plus ALA in comparison to the control. The results of the present study suggested that foliar ALA treatment had no effect on the Na and Cl uptake, the internal ALA concentration, and had no role in adverting the effects of salinity on plant growth. The present study has proven that foliar ALA is directly used by the plant for the synthesis of chlorophyll in order to increase the photosynthetic rate and thus to help tomato plants to survive the salinity stress.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 796
Author(s):  
Khizar Hayat ◽  
Jafar Khan ◽  
Asif Khan ◽  
Shakir Ullah ◽  
Shahid Ali ◽  
...  

Proline plays a significant role in the plant response to stress conditions. However, its role in alleviating metal-induced stresses remains elusive. We conducted an experiment to evaluate the ameliorative role of exogenous proline on cadmium-induced inhibitory effects in pigeon pea subjected to different Cd treatments (4 and 8 mg/mL). Cadmium treatments reduced photosynthetic attributes, decreased chlorophyll contents, disturbed nutrient uptake, and affected growth traits. The elevated activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), in association with relatively high contents of hydrogen peroxide, thiobarbituric acid reactive substances, electrolyte leakage, and endogenous proline, was measured. Exogenous proline application (3 and 6 mM) alleviated cadmium-induced oxidative damage. Exogenous proline increased antioxidant enzyme activities and improved photosynthetic attributes, nutrient uptake (Mg2+, Ca2+, K+), and growth parameters in cadmium-stressed pigeon pea plants. Our results reveal that proline supplementation can comprehensively alleviate the harmful effects of cadmium on pigeon pea plants.


Sign in / Sign up

Export Citation Format

Share Document