scholarly journals Effect of Ethylene Antagonist Silver Thiosulphate on the Flower Longevity of Clarkia pulchella Pursh.

2018 ◽  
Vol 26 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Riyaz Ahmad Dar ◽  
Inayatullah Tahir

Abstract An experiment was conducted to study the effect of different concentrations of silver thiosulphate (STS) on flower longevity of Clarkia pulchella Pursh. The buds were subjected to 0.1, 0.25, 0.5, 0.75 and 1 mM of STS for 1 h pulse treatment. A separate set of flowers kept in distilled water was designated the control group. STS treatment resulted in improved flower longevity besides maintaining higher fresh and dry mass, water content and floral diameter. Conversely, total phenols, lipid peroxidation and lipoxygenase (LOX) activity decreased. The flowers treated with STS showed a significant increase in the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Amongst various grades used, 0.5 mM STS was found to be most effective in enhancing the flower longevity by 1.5 days. The present study reveals that STS maintains lower LOX activity, thereby increased membrane stability index by improving the activity of antioxidant enzymes.

2011 ◽  
Vol 57 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
W.M. Bhutta

Soil salinity and semi-arid and arid climate of Pakistan is a major constraint in agriculture and predominantly in foodstuff production. It limits crop yield and use of land previously uncultivated. Wheat is moderately salt tolerant. A great variation was observed between and within the cultivars (genotypes: S-24 salt tolerant and DN-27 salt sensitive) in relationship to the choice of salinity level (control and treatments: in increment of 25 mol/m<sup>3</sup> NaCl/day to a final level of 80 and 160 mol/m<sup>3 </sup>NaCl into the nutrient solution) that will be used for screening purpose. Relative water content (RWC), membrane stability index and the activities of some antioxidant enzymes were determined after 20 and 40 days of salt stress exposure. As a result of activity enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase increased in S-24 with the increase of salt stress, while in DN-27 all the enzymes showed constant activity at all the stress levels. Meanwhile, relative water content and membrane stability index decrease the value as well as they increases the stress levels. It can be concluded that all three antioxidant enzymes were limiting factors for these genotypes and these reasons also led to the salt sensitivity in DN-27. Different selection methods should be applied to improve different traits in different conditions in wheat.


2011 ◽  
Vol 39 (1) ◽  
pp. 165 ◽  
Author(s):  
Ezatollah ESFANDIARI ◽  
Vaghef ENAYATI ◽  
Amin ABBASI

The effects of salt stress on the activity of antioxidative enzymes, some oxidative stress indices and Na+ and K+ content were studied in leaves of two durum wheat cultivars, Egypt 449 (salt-tolerant) and Syria 371 (salt-sensitive), grown under control (nutrient solution) or salt stress (nutrient solution containing 200 mM NaCl) conditions. Leaves of control and salt-stressed plants were harvested from 10 days old plants beyond salt treatment. The results showed significant increase for activities of antioxidant enzymes such as ascorbate peroxidase (APX) and guaiacol peroxidase (GPX), in Egypt 449 under salinity. At the same time, in cultivar Egypt 449, activity of SOD and CAT were not changed. Meanwhile, under salinity condition the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and GPX in cultivar Syria 371 was lower than control. There was no significant difference between salinity situation and control ones regarding APX activity. Salt stress elevated the amounts of malondialdehyde (MDA) in both cultivars. However, the increasing rate in Syria 371 was more than (four times) that of Egypt 449. Membrane stability index (MSI) of both cultivars negatively influenced by salinity. This negative impact on Syria 371 was highlighted than on Egypt 449. Hydrogen peroxide (H2O2) content of salinity faced Syria 371 was higher than control. Both cultivars displayed increasing and decreasing trend for Na+ and K+ content, respectively. Moreover, K+/Na+ ratio was decreased in both cultivars due to salinity. The studied parameters elucidated that salt resistance of Egypt 449 might be due to increased activity of antioxidant enzymes, low lipid peroxidation, assumingly lower changes in membrane stability index and avoidance of Na+ absorption.


2021 ◽  
Vol 27 (2) ◽  
pp. 183-195
Author(s):  
Mohammad Lateef Lone ◽  
Sumira Farooq ◽  
Aehsan ul haq ◽  
Shazia Parveen ◽  
Inayatullah Tahir

Abstract In view of extending the relatively brief postharvest life of flowers by a range of technologies, the present study elucidates the implication of 6-benzylamino purine (BAP), kinetin (KN) and thidiazuron (TDZ) on postharvest performance and flower longevity of isolated flowers of Calendula officinalis. BAP and KN belong to adenine group cytokinins while as TDZ is a diphenyl urea compound having cytokinin like activity. The harvested flowers were supplemented with BAP, KN and TDZ at various concentrations viz., 25, 50, 75 and 100 µM at one day before anthesis (cup shaped) stage. The control was designated by a distinct set of flowers held in distilled water (DW). Our findings revealed substantial enhancement in flower longevity by application of various growth regulators as compared to the control. Vase solutions containing BAP and KN at 50 µM and TDZ at 75 µM (individually) were most effective in improving the longevity of cut Calendula flowers. Improvement in flower longevity was primarily associated with high membrane stability index (MSI), upregulated activities of various antioxidant enzymes viz., catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), besides an attenuated lipoxygenase (LOX) activity in the petals. As compared to control, the treated flowers exhibited higher values of soluble proteins, total phenols and total sugars, besides lower α-amino acid content in the petal tissues. However, BAP outplayed TDZ and KN in improving the flower longevity of Calendula officinalis by maintaining higher physiological and biochemical stability in petals.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


2020 ◽  
Vol 70 (2) ◽  
pp. 227-237
Author(s):  
Eda Güneş

Abstract The aim of the this study was to evaluate the effects of fresh, dried and freeze-dried Centaurea depressa M. Bieb. (Asteraceae) on the oxidant and antioxidant status of the model organism D. melanogaster Meigen (Diptera: Drosophilidae) experimentally. The study was carried out from 2016 to 2019, and plant leaf extracts (0-50 mg/l) were added to insect standard artificial diets. The total protein, protein carbonyl content and glutathione-S-transferase, superoxide dismutase and catalase activities were quantified at the insect’s third larval stage. Our data showed that protein carbonyl content varied from 2.70 nmol/mg protein in the control group to 59.11 nmol/mg protein in the group fed with fresh leaf extract signifying induction of oxidative stress. All extracts increased the levels of all antioxidant enzymes and decreased the amounts of total protein. Meanwhile, the group fed with the freeze-dried extract showed no significant difference in the levels of total protein and protein carbonyl content except at the 50 mg/l concentration of the extract. Moreover, this group had superoxide dismutase and catalase activities 4 to 5 times higher than in the control group. In conclusion, induction of oxidative stress indicates that the fresh form of C. depressa leaves may have potential as a natural pesticide, whereas induction of endogenous antioxidant enzymes by the freeze-dried extract suggest its potential as an antioxidant.


2016 ◽  
Vol 7 (4) ◽  
pp. 476-487 ◽  
Author(s):  
M. Ashraf ◽  
S. Muhammad Shahzad ◽  
N. Akhtar ◽  
M. Imtiaz ◽  
A. Ali

Sunflower (Helianthus annuus L.) plants were grown with saline–sodic water (SSW) by treating with potassium (K @ 100 and 200 mg K2O kg−1 soil) and farm yard manure (FYM @ 5 and 10% of soil, w/w). Irrigation with untreated SSW caused soil salinization/sodification, leading to an increase in electrical conductivity (EC) of 165% and sodium adsorption ratio (SAR) 100% with the subsequent increase of 736% in shoot Na+, a decrease of 52% in shoot K+ and 94% in shoot K+:Na+ratio compared to canal water. SSW also decreased physiological activities: 31% relative water content (RWC), 34% membrane stability index (MSI), 51% protein, 33% chlorophyll and 58% photosynthetic rate compared to canal water. Integrated application of K and FYM, at higher level, decreased soil EC by 54% and SAR 43%, and shoot Na+ 57% with a corresponding improvement in soil organic matter 166%, shoot K+ 360%, shoot K+:Na+ratio 987%, RWC 34%, MSI 37%, protein 60%, photosynthetic rate 102%, superoxide dismutase 92%, peroxidase 78% and catalase 52% compared to SSW without K and/or FYM. In conclusion, exogenous application of K and FYM could be a promising approach to use brackish water in agriculture on a sustainable basis.


2004 ◽  
Vol 23 (1) ◽  
pp. 29-34 ◽  
Author(s):  
G Kadikoylu ◽  
Z Bolaman ◽  
S Demir ◽  
M Balkaya ◽  
N Akalin ◽  
...  

Cisplatin-induced nephrotoxicity is associated with an increase in lipid peroxidation and oxygen free radicals in rat kidneys. In this study, the effects of desferrioxamine were compared to vitamin C and E on cisplatin-induced lipid peroxidation and antioxidant enzyme activities in rat kidneys. Rats were divided into five groups, with 15 Wistar rats in each group. In the control group, rats received 1 mL/100 g isotonic saline solution intraperitoneally (i.p.). In Group II, 10 mg/kg cisplatin i.p. was injected to rats. Thirty minutes before the same dosage of cisplatin administration, 100 mg/kg i.p. vitamin C or E was given to rats in groups III and IV, respectively. Rats in Group V received 250 mg/kg desferrioxamine i.p., before the same dose of cisplatin administration. All rats were killed by cervical dislocation after 72 hours. The kidneys were immediately removed and washed in cold saline. Spectrophotometric method was used for all analyses. While catalase, glutathione reductase (GR), and super oxide dismutase (SOD) levels were found to be significantly decreased (P B < 0.001), malondialdehyde (MDA) (P < 0.05) and hydrogen peroxide (H2O2) (P < 0.001) levels were significantly increased in the cisplatin group when compared to the controls. MDA levels were decreased by desferrioxamine (P < 0.005) as well as vitamin C and E (P < 0.05 and P < 0.001, respectively). These three compounds induced a significant increase in SOD levels (P B < 0.05), but only in the vitamin C group, were SOD levels not significantly different than the levels of the controls (P > 0.05). In the desferrioxamine (P < 0.05), vitamin C and E groups (P < 0.001 for both), the cisplatin elevated H2O2 levels were decreased. None of these drugs had any effect on GR and catalase levels (P > 0.05). Desferrioxamine is useful to prevent cisplatin-induced lipid peroxidation, however, vitamin C and E are more effective on antioxidant enzymes than desferrioxamine.


2020 ◽  
Vol 17 ◽  
pp. 00103
Author(s):  
Oleg Fomenko ◽  
Evgeny Mikhailov ◽  
Nadezhda Pasko ◽  
Svetlana Grin ◽  
Andrey Koshchaev ◽  
...  

The emergence of antibiotic-resistant bacteria is considered a serious problem. The resistance of bacteria against antimicrobial substances becomes important in the repair systems for damage to DNA and RNA molecules. The role of the antioxidant system in the development of bacterial resistance against antibiotics is not yet practically studied. The article studied the expression regulation of the genes of antioxidant enzymes and enzymes involved in the genetic information in E. coli cells with the antibiotic resistance against apramycin and cefatoxime. The study was conducted on bacterial cells resistant against these two antibiotics. The genes blaOXA-1, blaSHV, blaTEM, mdtK, aadA1, aadA2, sat, strA, blaCTX, blaPER-2, tnpA, tnpR, intC1 and intC1c were identified in bacterial cell case. This indicates the presence of plasmids in bacteria with these genes, which provide bacterial resistance to apramycin and cefatoxime. It was established that during the formation of cefotaxime resistance, there was a sharp increase in the expression of the Cu, Zn superoxide dismutase gene: in comparison with the control group, the representation of its transcripts increased 141.04 times for cefotoxime and 155.42 times for apramycin. It has been established that during the formation of resistance to the studied antibiotics in E. coli, an increase in the expression of the end4 and end3 genes is observed. There is tendency toward an increase in the number of transcripts of the pol3E gene observed in the formation of resistance against cefotaxime and apromycin.


2020 ◽  
Vol 77 (2) ◽  
pp. 165-173
Author(s):  
Zarko Micovic ◽  
Sanja Kostic ◽  
Slavica Mutavdzin ◽  
Aleksa Andrejevic ◽  
Aleksandra Stamenkovic ◽  
...  

Background/Aim. Chronically induced hypermethioninemia leads to hyperhomocysteinemia which causes oxidative stress, atherogenesis, neurodegeneration and cancer. However, little is known about the acute and subchronic effects of DL-methionine (Met). The aim of study was to assess the effects of acutely and subchronically applied Met on oxidative stress parameters in rat plasma [enzymes: catalase (CAT), glutathione peroxidise (GPx), superoxide dismutase (SOD) and index of lipid peroxidation, malondialdehyde (MDA)], and acetylcholinesterase (AChE) activity in rat cardiac tissue. Methods. The enzymes activities, as well as MDA concentration were evaluated following acute (n = 8) and subchronic (n = 10) application of Met [i.p. 0.8 mmoL/kg body weight (b.w.) in a single dose in the acute overload or daily during three weeks in the subchronic overload]. The same was done in the control groups following application of physiological solution [i.p. 1 mL 0.9% NaCl (n = 8) in the acute overload and 0.1?0.2 mL 0.9% NaCl, daily during three weeks (n =10) in the subchronic overload]. Tested parameters were evaluated 60 minutes after application in acute experiments and after three weeks of treatment in subchronic experiments. Results. There were no difference in homocysteine values between the groups treated with Met for three weeks and the control group. Met administration significantly increased the activity of CAT and GPx after 1 h compared to the control group (p = 0.008 for both enzymes), whereas the activity of SOD and MDA concentrations were unchanged. Subchronically applied Met did not affect activity of antioxidant enzymes and MDA level. AChE activity did not show any change in rat cardiac tissue after 1 h, but it was significantly decreased after the subchronic treatment (p = 0.041). Conclusion. Results of present research indicate that Met differently affects estimated parameters during acute and subchronic application. In the acute treatment Met mobilizes the most part of antioxidant enzymes while during the subchronic treatment these changes seems to be lost. On the contrary, the acute Met overload was not sufficient to influence on the AChE activity, while longer duration of Met loading diminished function of the enzyme. These findings point out that methionine can interfere with antioxidant defense system and cholinergic control of the heart function.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260960
Author(s):  
Muhammad Mahran Aslam ◽  
Fozia Farhat ◽  
Mohammad Aquil Siddiqui ◽  
Shafquat Yasmeen ◽  
Muhammad Tahir Khan ◽  
...  

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10–67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Sign in / Sign up

Export Citation Format

Share Document