scholarly journals Improving the dimensioning of closed collecting and drainage network of drainage systems

Author(s):  
L. R. Volk ◽  
O. V. Bezusyak ◽  
P. P. Volk

Research relevance. Climatic changes determine the need to ensure a high productivity of drained lands through the use of appropriate adaptive measures for regulating and accumulating moisture in the soil. Therefore, the issue of changing approaches to the creation and operation of water reclamation facilities on drained lands gains relevance. Relevant are also changes in the methodology of projects for drainage systems construction and reconstruction and their optimal design solutions (type, design, systems parameters, and components of their technical elements) in the closed collecting and drainage network. In this case, the closed collecting and drainage network is a key element of the drainage system, which can operate in the drainage and soil moisture regime. Aim of the study is to reveal new approaches to improving the methods of dimensioning the closed collecting and drainage network of drainage systems operating in the regime of drainage and soil moisture, based on justifying the relationship and considering the impact of network efficiency on the efficiency of water regulation on drained lands. Research methods. The analysis and generalization of the existing researches and methods on justification of the type, design, and parameters of the closed collecting and drainage network in the regime of drainage and soil moisture of the drained lands is executed. Systems approach and systems analyses were used to determine the existence of a structural relationship between the operation regime of the closed collecting and drainage network and the water regime of the drained lands. In performing the theoretical research, methods of mathematical modeling of the hydrodynamic structure of turbulent flow in pressure pipes using Navier-Stokes differential equations were applied. To confirm the adequacy of the obtained analytical models, the methods of statistical processing of experimental research results by Nikuradze I., Shevelyov F.O., and Altshul A.D. were used. Research findings and main conclusions. Thus, based on the performed theoretical and experimental research, we have proposed relatively new scientific positions in contrast to the semi-empirical theories for determining the hydrodynamic structure of the flow in the pressure pipe. This allows for dimensioning the entire hydrodynamic structure for all areas of the turbulent flow based on the application of the obtained universal equations. That is, we can construct a distribution profile of the total turbulent kinematic viscosity, averaged velocity, tangential stresses, and angular velocities of fluid particles. Prospects. The presented approach will make it possible to determine the efficiency of flow in drainage pipes and in a closed collecting and drainage network. Also, this approach will further be helpful in improving the methods of designing and dimensioning technological and structural parameters of the network and ensuring the overall technical, technological, economic, and environmental efficiency of drainage systems.

2020 ◽  
Author(s):  
Emma Tronquo ◽  
Hans Lievens ◽  
Niko E.C. Verhoest

<div> </div><p>Current radar systems are generally monostatic. However, some theoretical research indicated the potential of bistatic radar measurements to improve applications. In the research presented, we explore the use of InSAR/PolInSAR mono- and bistatic measurements acquired in L-band for soil moisture monitoring. The main objective of this study is to compare the performance of soil moisture retrieval from monostatic with that obtained through bistatic observations.</p><p>The recent BelSAR campaign (in 2018) provided time series of airborne mono- and bistatic measurements at L-band, recorded during the growing season including bare soil conditions. In addition, in situ measurements of soil moisture and surface roughness were acquired concurrently with the airborne flights. Here, we provide an initial assessment of the sensitivity of the scatter observations with respect to soil moisture and surface roughness. The literature suggests that the impact of surface roughness on the retrieval of soil moisture decreases due to the simultaneous use of the mono- and bistatic measurements. However, our preliminary results show that the bistatic data do not provide substantial added value to reduce the impact of surface roughness on soil moisture retrieval. Further, we validate both mono- and bistatic scatter simulations from the Advanced Integral Equation Model (AIEM) using the airborne measurements. The AIEM allows additional investigations with respect to the sensitivity towards surface roughness and soil moisture of both mono- and bistatic scattering signals, as well as the impacts of sensor-related parameters such as the incidence angle, the bistatic configuration (e.g. the location of the second sensor), the frequency and the polarization.</p><p> </p><p> </p>


2020 ◽  
Vol 5 (1) ◽  
pp. 27-47
Author(s):  
Sitti Aisyah. M Aisyah ◽  
Sappaemi

The Corona virus pandemic exploited by irresponsible elements.  They do a cunning business strategy, which is to hoard goods, in fiqhi terms known as iḥtikār. In the Islamic view, iḥtikār is a prohibited business practice and will be met with a painful punishment in the afterlife.  The purpose of this paper is to provide an understanding about the impact of COVID 19 on the practice of buying and selling (iḥtikār).  This paper uses qualitative research methods in the form of library reseach using the shar'i approach.  From this study it can be concluded that the behavior of hoarding goods with the aim of reselling them at high prices to obtain large profits.  In Islamic Shari'ah, iḥtikār‘s law is haram because it contains elements that harm others.  This is very clearly stated in QS al-Humazah/109: 1-2 and punished by sin as stipulated in the hadith of the Messenger of Allah.


2018 ◽  
Vol 7 (1) ◽  
pp. 8-17
Author(s):  
Mahsa Assadi

This study reports a pre-experimental research on the impact of metacognitive instruction on EFL learners’ metacognitive awareness and their listening performance. To obtain the goal of the study, a group of 30 Iranian intermediate EFL learners, including 14 males and 16 females, were selected randomly. Their ages range from 20 to 24. The participants took part in 16 weeks’ intervention program based on metacognitive pedagogical sequence consisted of five stages. The metacognitive awareness listening questionnaire (MALQ), and a listening test were also used to find changes in metacognitive awareness and listening performance before and after the treatment. The results of comparing pre and posttests scores revealed that metacognitive instruction raised the learners’ metacognitive awareness and helped them improve their listening comprehension ability.


2019 ◽  
Vol 7 (1) ◽  
pp. 268-288
Author(s):  
Dlan Ismail Mawlud ◽  
Hoshyar Mozafar Ali

The development of technology, information technology and various means of communication have a significant impact on public relations activity; especially in government institutions. Many government institutions have invested these means in their management system, in order to facilitate the goals of the institution, and ultimately the interaction between the internal and external public. In this theoretical research, I tried to explain the impact of the new media on public relations in the public administration, based on the views of specialists. The aim of the research is to know the use of the new media of public relations and how in the system of public administration, as well as, Explaining the role it plays in public relations activities of government institutions. Add to this, analyzing the way of how new media and public relations participate in the birth of e-government. In the results, it is clear that the new media has facilitated public relations between the public and other institutions, as it strengthened relations between them


2020 ◽  
Vol 3 (152) ◽  
pp. 57-64
Author(s):  
O. O. Oliinyk ◽  

Changing the system of family values, views of the society on the significance and functioning of the family institution contribute to the transformation of marital role relationships in modern families. The already formed model of role interaction, the ability of spouses to define and clearly distribute family roles and to treat them responsibly is the important factors in building constructive marital relations and creating a favorable psychological climate in the family. Objective. The research deals with the analysis of the essence of the “family role” concept and the classification of family roles; experimental definition and analysis of the main types of family roles in marital relations. Methods. Theoretical research methods were used to solve the research problem: analysis of scientific psychological literature, generalization method, systematization of scientific information. To solve the second part of the set objective, the empirical research methods were used, such as: conversation, psychodiagnostic method “Distribution of roles in the family” by Yu.Ye. Alioshyna, L.Ya. Hofman, O.M. Dubrovska, and also the method of processing and quantitative and qualitative interpretation of results. The research was conducted during September-October 2020. The study involved 11 married couples (husband and wife) with different marital experience of 22 people aged 25 to 47 years (Kyiv). All the couples have children aged 1 to 20 years. The results of an empirical study of the peculiarities of family roles distribution showed that the roles of entertainment organizer (63.64 %), master (mistress), (72.73 % and 63.64 %), the family subculture organizer (54, 55 % and 45.45 %) women and men share almost equally; the roles of educator and “psychotherapist” is more typical for women (90.91 % and 81.82 %); The role of sexual partner and the partner responsible for material support is more often performed by men (90.91 % and 72.73 %). The prospects for further research are seen in the study of role interaction in the parental families of adolescents and young people as a prerequisite for their future family roles.


2017 ◽  
Vol 68 (1) ◽  
pp. 175-179
Author(s):  
Oana Roxana Chivu ◽  
Augustin Semenescu ◽  
Claudiu Babis ◽  
Catalin Amza ◽  
Gabriel Iacobescu ◽  
...  

Rainfall is a major component of the environment and the main source of the air purification becouse of many pollutants increases who have the most varied sources: various human activities including industry and agriculture, and some household duties. Air purification by means of precipitation is achieved by numerous highly complex mechanisms. The final products of degradation of the pollutant in the air, which are generally harmless, can be reacted with each other in the presence of water, giving rise to the final compounds with a high toxicity. Thus, exhaust, mobile sources of noxious almost identical to those specific activities in the industrial processing of oil, contain lead which is the ideal catalyst for converting SO2 to sulfuric acid in the presence of rainwater, with all the disadvantages that they create. This paper will present an experimental research oabout how rainfall water quality is influenced by the activity of the industrial processing of oil, in a chemical plant in Constanta County.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Argelia E. Rascón-Ramos ◽  
Martín Martínez-Salvador ◽  
Gabriel Sosa-Pérez ◽  
Federico Villarreal-Guerrero ◽  
Alfredo Pinedo-Alvarez ◽  
...  

Understanding soil moisture behavior in semi-dry forests is essential for evaluating the impact of forest management on water availability. The objective of the study was to analyze soil moisture based in storm observations in three micro-catchments (0.19, 0.20, and 0.27 ha) with similar tree densities, and subject to different thinning intensities in a semi-dry forest in Chihuahua, Mexico. Vegetation, soil characteristics, precipitation, and volumetric water content were measured before thinning (2018), and after 0%, 40%, and 80% thinning for each micro-catchment (2019). Soil moisture was low and relatively similar among the three micro-catchments in 2018 (mean = 8.5%), and only large rainfall events (>30 mm) increased soil moisture significantly (29–52%). After thinning, soil moisture was higher and significantly different among the micro-catchments only during small rainfall events (<10 mm), while a difference was not noted during large events. The difference before–after during small rainfall events was not significant for the control (0% thinning); whereas 40% and 80% thinning increased soil moisture significantly by 40% and 53%, respectively. Knowledge of the response of soil moisture as a result of thinning and rainfall characteristics has important implications, especially for evaluating the impact of forest management on water availability.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


Sign in / Sign up

Export Citation Format

Share Document