scholarly journals Investigation on the Tensile and Flexural Properties of Coir-fibre-reinforced Polypropylene Composites

2015 ◽  
Vol 7 (3) ◽  
pp. 97-111 ◽  
Author(s):  
K. Begum ◽  
M. A. Islam ◽  
M. M. Huque

The utilization of natural fibres as reinforcement in polymer composites has been increased significantly for their lightweight, low cost, high specific strength, modulus and biodegradable characteristic. In this present work, the mechanical properties of randomly distributed short coir-fibre-reinforced polypropylene (PP) composites have been studied as a function of fibre loading. In order to improve the composite’s mechanical properties, raw coir fibres were treated with 1% alkali (NaOH) solution. Both raw and alkali treated coir-fibre-reinforced PP composites were prepared with different fibre loadings (10, 15, 20, 25, 30 and 35 wt%) using a double roller open mixer machine and injection molding machine. The mechanical properties, such as tensile strength (TS), tensile modulus (TM), flexural strength (FS) and flexural modulus (FM) were investigated for the prepared composites. The alkali treated coir-fibre-reinforced PP composites showed better results in mechanical properties compared to untreated composites. Finally, the optical microscopic studies were carried out on fractured surfaces of the tensile test specimens, which indicated weak interfacial bonding between the fibre and the polymer.

2021 ◽  
Vol 30 ◽  
pp. 263498332110074
Author(s):  
Henry C Obasi ◽  
Uchechi C Mark ◽  
Udochukwu Mark

Conventional inorganic fillers are widely used as fillers for polymer-based composites. Though, their processing difficulties and cost have demanded the quest for credible alternatives of organic origin like coconut shell fillers. Dried shells of coconut were burnt, ground, and sifted to sizes of 63, 150, 300, and 425 µm. The ground coconut shell particles (CSP) were used as a filler to prepare polypropylene (PP) composites at filler contents of 0% to 40% via injection melt blending process to produce PP composite sheets. The effect of the filler particle size on the mechanical properties was investigated. The decrease in the size of filler (CSP) was found to improve the yield strength, tensile strength, tensile modulus, flexural strength, flexural modulus, and hardness of PP by 8.5 MPa, 15.75 MPa, 1.72 GPa, 7.5 MPa, 100 MPa, and 10.5 HR for 63 µm at 40%, respectively. However, the elongation at break and modulus of resilience of the PP composites were seen to increase with increase in the filler size. Scanning electron microscope analysis showed that fillers with 63 µm particle size had the best distribution and interaction with the PP matrix resulting in enhanced properties.


BioResources ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. 1618-1625
Author(s):  
M. Alamgir Kabir ◽  
M. Monimul Huque ◽  
M. Rabiul Islam ◽  
Andrzej K. Bledzki

Raw jute fiber was treated with o-hydroxybenzenediazonium salt (o-HBDS) in alkaline media. Raw and modified jute fiber were used to prepare composites by mixing with polypropylene (PP) plastic in different weight fractions (20, 25, 30, and 35%) of jute fiber. The mechanical properties except elongation at break of o-HBDS-treated (in alkaline medium) jute fiber-PP composite were higher than those of PP alone, raw jute fiber-PP composites, and alkali-treated jute fiber-PP composites. The elongation at break of treated jute-PP composite decreased to a large extent as compared to that of PP. The increase of tensile strength, tensile modulus, flexural strength, flexural modulus, and Charpy impact strength were found to be exceptionally high (in some cases ~200%) as compared to those of literature values.


2018 ◽  
Vol 25 (2) ◽  
pp. 373-381 ◽  
Author(s):  
Shital R. Lanjewar ◽  
Pravin S. Bari ◽  
Dharmesh P. Hansora ◽  
Satyendra Mishra

AbstractIn this research work, the recycling of waste tea dust particles was done by preparing the injection moulded polypropylene (PP) composites using different (10–40 wt.%) loadings of tea dust particles as a filler. The tea dust particles were treated with maleic anhydride (MA) and its esterification effect was studied on physico-mechanical (morphology, mechanical, thermal and swelling) properties of tea dust:polypropylene (TD:PP) composites. Surface modification of tea dust particles was observed due to the MA treatment i.e. the esterification effect. The surface morphology of the composites showed better interfacial bonding between the maleated tea dust particles and PP than the untreated particles. The mechanical properties of the maleated TD:PP composites were found to be improved (200–300% higher tensile strength, 250% higher tensile modulus, 43% higher flexural strength and 10% higher hardness) as compared to untreated TD:PP composites. Crystallinity and thermal properties of the maleated TD:PP composites showed increasing trend with increase in filler content. Water absorption tests showed that maleated TD:PP composites absorb less water than that of untreated one. The increment in all these properties is due to the greater compatibility in tea dust particles and PP by MA treatment. Thus, tea dust particles can be suggested for preparation of composite materials.


2020 ◽  
pp. 004051752094424
Author(s):  
Wei Wang ◽  
Liu Liu ◽  
Ning Ding ◽  
Ruiyun Zhang ◽  
Jianyong Yu

Bio-based materials have attracted great attention due to their good mechanical properties, biodegradability, low cost, and easy processing, especially abundant resources. In this work, polypropylene (PP) composites reinforced with 15, 30 and 45 wt% wood powder (WP) were prepared by injection molding and their thermal, mechanical, and dynamic mechanical properties were characterized. It was found that the strength and modulus of the composite materials in the tensile and bending tests significantly increased, but the impact strength decreased. The dynamic mechanical test also showed that the storage modulus increased with the increase of WP content. WP endowed the composite material with rigidity and strength, but it was not good for toughness. Besides, the addition of WP did not change the crystal structure of the composites, while the degree of crystallinity decreased. WP-filled PP composites with stable mechanical and thermal properties have great potential to replace traditional glass fiber-reinforced composites in many fields such as construction, sports equipment, and the automotive industry.


2020 ◽  
Vol 15 ◽  
pp. 155892502095819
Author(s):  
Qianting Wang ◽  
Yu Zhang ◽  
Weikang Liang ◽  
Jianjie Wang ◽  
Youxin Chen

In this work, the surface of the bamboo fibers (BF) was treated with three kinds of silane coupling agents terminated with amino functional groups (KH550), epoxy functional groups (KH560), and methyl functional groups (KH570) to improve fiber–matrix adhesion. The effects of silane treatment on the mechanical properties and thermal behavior of BF/polypropylene (PP) composites were investigated. Mechanical test results showed that the order of modification effectiveness was KH570 > KH550 > KH560. KH570 treated fiber composite exhibited the best mechanical properties. The tensile strength and flexural strength of 5 wt% KH570 treatment reached to 36.1 and 54.7 MPa, which were 15.4% and 23.6% higher than those of UBF/PP composites. Simultaneously, the thermal stability increased from 467.0°C (UBF) to 470.6°C (KH-570 treated BF). An increase in crystallization temperature (1.7°C) and a decrease in crystallinity (5.8%) occurred upon the addition of 5% KH570 silanes treated bamboo fibers.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2578
Author(s):  
Junghoon Kim ◽  
Donghwan Cho

Waste Expanded polypropylene (EPP) was utilized as recycled matrix for kenaf fiber-reinforced polypropylene (PP) composites produced using chopped kenaf fibers and crushed EPP waste. The flexural properties, impact strength, and heat deflection temperature (HDT) of kenaf fiber/PP composites were highly enhanced by using waste EPP, compared to those by using virgin PP. The flexural modulus and strength of the composites with waste EPP were 98% and 55% higher than those with virgin PP at the same kenaf contents, respectively. The Izod impact strength and HDT were 31% and 12% higher with waste EPP than with virgin PP, respectively. The present study indicates that waste EPP would be feasible as recycled matrix for replacing conventional PP matrix in natural fiber composites.


2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Haitao Cheng ◽  
Jie Gao ◽  
Ge Wang ◽  
Sheldon Q. Shi ◽  
Shuangbao Zhang ◽  
...  

Abstract The work aimed at the improvement of the mechanical properties of bamboo fiber-polypropylene composites (BaFPPC) by treatment of the fibers with CaCO3 at various concentrations of the solution (0.05, 0.1, 0.2, and 0.3 mol l-1). CaCO3 particles were successfully deposited in situ to bamboo fibers by means of ionic reaction of Na2 CO3 and CaCl2 aqueous solution at various temperatures. Then BaFPPC were produced, and various tests on single fibers and the composites were performed. The compatibility between BaF and PP matrix was improved by the treatments. The crystallinity of inorganic materials was significantly affected by the reagent’s concentration. A 10.4% increase in tensile strength and a 16.7% increase in tensile modulus were observed after fiber treatment with CaCO3 at a concentration of 0.2 mol l-1.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Nerea Pérez ◽  
Xiao-Lin Qi ◽  
Shibin Nie ◽  
Pablo Acuña ◽  
Ming-Jun Chen ◽  
...  

Polypropylene (PP) is currently widely used in areas requiring lightweight materials because of its low density. Due to the intrinsic flammability, the application of PP is restricted in many conditions. Aluminum trihydroxide (ATH) is reported as a practical flame retardant for PP, but the addition of ATH often diminishes the lightweight advantage of PP. Therefore, in this work, glass bubbles (GB) and octacedylamine-modified zirconium phosphate (mZrP) are introduced into the PP/ATH composite in order to lower the material density and simultaneously maintain/enhance the flame retardancy. A series of PP composites have been prepared to explore the formulation which can endow the composite with balanced flame retardancy, good mechanical properties, and low density. The morphology, thermal stability, flame retardancy, and mechanical properties of the composites were characterized. The results indicated the addition of GB could reduce the density, but decreased the flame retardancy of PP composites at the same time. To overcome this defect, ATH and mZrP with synergetic effect of flame retardancy were added into the composite. The dosage of each additive was optimized for achieving a balance of flame retardancy, good mechanical properties, and density. With 47 wt % ATH, 10 wt % GB, and 3 wt % mZrP, the peak heat release rate (pHRR) and total smoke production (TSP) of the composite PP-4 were reduced by 91% and 78%, respectively. At the same time, increased impact strength was achieved compared with neat PP and the composite with ATH only. Maintaining the flame retardancy and mechanical properties, the density of composite PP-4 (1.27 g·cm−3) is lower than that with ATH only (PP-1, 1.46 g·cm−3). Through this research, we hope to provide an efficient approach to designing flame retardant polypropylene (PP) composites with low density.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
C. P. Rejisha ◽  
S. Soundararajan ◽  
N. Sivapatham ◽  
K. Palanivelu

This paper evaluated the effect of multiwall carbon nanotube (MWCNT) on the properties of PBT/PC blends. The nanocomposites were obtained by melt blending MWCNT in the weight percentages 0.15, 0.3, and 0.45 wt% with PBT/PC blends in a high performance corotating twin screw extruder. Samples were characterized by tensile testing, dynamic mechanical analysis, thermal analysis, scanning electron microscopy, and X-ray diffraction. Concentrations of PBT and PC are optimized as 80 : 20 based on mechanical properties. A small amount of MWCNT shows better increase in the thermal and mechanical properties of the blends of PBT/PC nanocomposite when compared to nanoclays or inorganic fillers. The ultimate tensile strength of the nanocomposites increased from 54 MPa to 85 MPa with addition of MWCNT up to 0.3% and then decreased.The tensile modulus values were increased to about 60% and the flexural modulus was more than about 80%. The impact strength was also improved with 20% PC to about 60% and with 0.15% MWCNT to about 50%. The HDT also improved from 127°C to 205°C. It can be seen from XRD result that the crystallinity of PBT is less affected by incorporating MWCNT. The crystallizing temperature was increased and the MWCNT may act as a strong nucleating agent.


Sign in / Sign up

Export Citation Format

Share Document