scholarly journals Comprehensive Substrate-Based Exploration of Probiotics From Undistilled Traditional Fermented Alcoholic Beverage ‘Lugri’

2021 ◽  
Vol 12 ◽  
Author(s):  
Neha Baliyan ◽  
Kiran Dindhoria ◽  
Aman Kumar ◽  
Aman Thakur ◽  
Rakshak Kumar

Cereal-based traditional fermented beverages (TFBs) are prevalent among India’s ethnic community, and lugri is one such TFB popular among the tribal people of the Lahaul valley in North-Western Himalaya. Previous studies have reported that lugri harbors probiotics and contains amino acids and vitamins but comprehensive substrate-specific exploration of lugri for probiotic attributes is unexplored. The present study selected three substrate-based lugri (wheat, rice, and barley) to study their biochemical properties and explore potential probiotics. This study screened the best probiotic strains for antioxidant studies and the fermentative process. A biochemical analysis determined that rice-based lugri had a higher alcohol content, electric conductivity, crude protein, and lower pH than barley and wheat-based lugri. A total of 134 distinct morphotypes were screened, and 43 strains were selected based on their qualitatively superior acid and bile tolerance. Rice-based undistilled lugri harbored the most probiotics, with 22 out of 43 strains isolated. All 43 bacterial isolates exhibited properties like cell surface hydrophobicity, cell-auto aggregation, β-galactosidase, and exopolysaccharide production, supporting them as possible probiotics. Based on antibiotic susceptibility, hemolytic activity, and biofilm formation, all the bacterial strains were found to be non-pathogenic. Taxonomically, they ranged among eight distinct genera and 10 different species. Statistically, 12 isolates were found to be the most promising probiotic, and eight strains were isolated from rice-based undistilled lugri. Furthermore, the antioxidant activity of the promising isolates was tested, based on free-radical scavenging ability toward 2,2-diphenyl-1-picrylhydrazyl (4.39–16.41%) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (15.29–57.74%). The strain Lacticaseibacillus paracasei LUL:01 showed the best antioxidant activity and probiotic attributes, and hence was used for the production of fermented milk. The strain LUL:01 fermented the sterile milk within 18 h, and the viable count remained above the legal requirement of 6 log10 CFU/ml during 28 days storage at 4°C. The strain represents a suitable candidate for applying probiotic functional food formulation with several health benefits.

2019 ◽  
Vol 9 (6) ◽  
pp. 4591-4597

Fermented foods are high in nutrient content than any other category of foods due to the presence of live microorganisms called probiotics. Its application in manufacturing of dairy foods and role in different types of disease prevention ranks it as the most exuberant. The aim of the present study was to isolate and identify lactic acid bacteria from native curd samples collected from dairy farms of Odisha state of India and explore its probiotic potential. Three morphologically distinct bacterial strains were isolated using MRS agar plates. The biochemical study confirmed that all the isolates were gram-positive. The molecular approaches were used to analyze the taxonomical diversity of isolates. 16 S rRNA sequencing was carried out and the bacterial isolates were taxonomically classified as Lactobacillus sp., Lactobacillus plantarum, Lactobacillus casei with NCBI Gene bank accession number [MG573071], [MG573072] and [MG573073] respectively. Further, the isolated bacterial strains were screened for their acid and bile tolerance competence as a principal criterion for probiotic. Among the isolates Lactobacillus casei (MG573073) was found to be highly tolerant of low pH and bile salts, posed strongest cell surface hydrophobicity of 75%. However, the maximum zone of inhibition was observed against Amoxilline/clavunic acid 44mm. The cell growth was found higher in presence of 2% inulin with cell viability 9.11 log 10 CFU/ml. In conclusion, based on the obtained results, Lactobacillus casei can act as a suitable probiotic candidate.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Magdalena Woźniak ◽  
Lucyna Mrówczyńska ◽  
Anna Sip ◽  
Marta Babicka ◽  
Tomasz Rogoziński ◽  
...  

Introduction. Honey, propolis and pollen belong to bee products that have beneficial biological properties. These products exhibit e.g. antibacterial, antifungal and antioxidant properties. Due to biological activity and natural origin, bee products are used, e.g. in the food industry, cosmetology and pharmacy. Aim. The aim of the study was to compare the antioxidant and antibacterial activity of honey, propolis and pollen from an apiary located in Wielkopolska Province. Material and methods. Honey, propolis and pollen used in this study came from the same apiary located in Wielkopolska Province. The antioxidant potential of bee products was evaluated applying DPPH· free radical scavenging activity assay. The antimicrobial activity of the tested bee products was determined by the point-diffusion method against 13 strains of pathogenic and potentially pathogenic bacteria. In addition, the total content of phenolic compounds in honey, propolis and pollen was determined by the colorimetric method. Results. Propolis exhibited higher antioxidant activity, in comparison to honey and pollen. The antiradical activity of propolis was equal to 80% approx. activity of Trolox, the standard antioxidant. Among tested bee products, propolis was characterized by the highest total phenols content. In addition, honey, propolis and pollen showed antagonistic activity against tested bacterial strains. Conclusions. The obtained results indicate that among the tested bee products of native origin, i.e. honey, propolis and pollen, propolis characterized by the highest antioxidant activity and the total content of phenolic compounds. In addition, all bee products showed bactericidal activity against the tested bacterial strains.


2002 ◽  
Vol 68 (4) ◽  
pp. 2018-2025 ◽  
Author(s):  
Hitoshi Shimoi ◽  
Kazutoshi Sakamoto ◽  
Masaki Okuda ◽  
Ratchanee Atthi ◽  
Kazuhiro Iwashita ◽  
...  

ABSTRACT Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast.


Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2673-2682 ◽  
Author(s):  
Astrid Roosjen ◽  
Henk J. Busscher ◽  
Willem Norde ◽  
Henny C. van der Mei

Most bacterial strains adhere poorly to poly(ethylene oxide) (PEO)-brush coatings, with the exception of a Pseudomonas aeruginosa strain. The aim of this study was to find factors determining whether P. aeruginosa strains do or do not adhere to a PEO-brush coating in a parallel plate flow chamber. On the basis of their adhesion, a distinction could be made between three adhesive and three non-adhesive strains of P. aeruginosa, while bacterial motilities and zeta potentials were comparable for all six strains. However, water contact angles indicated that the adhesive strains were much more hydrophobic than the non-adhesive strains. Furthermore, only adhesive strains released surfactive extracellular substances, which may be engaged in attractive interactions with the PEO chains. Atomic force microscopy showed that the adhesion energy, measured from the retract curves of a bacterial-coated cantilever from a brush coating, was significantly more negative for adhesive strains than for non-adhesive strains (P<0.001). Through surface thermodynamic and extended-DLVO (Derjaguin, Landau, Verwey, Overbeek) analyses, these stronger adhesion energies could be attributed to acid–base interactions. However, the energies of adhesion of all strains to a brush coating were small when compared with their energies of adhesion to a glass surface. Accordingly, even the adhesive P. aeruginosa strains could be easily removed from a PEO-brush coating by the passage of a liquid–air interface. In conclusion, cell surface hydrophobicity and surfactant release are the main factors involved in adhesion of P. aeruginosa strains to PEO-brush coatings.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1091
Author(s):  
Soumi De-Montijo-Prieto ◽  
María del Carmen Razola-Díaz ◽  
Ana María Gómez-Caravaca ◽  
Eduardo Jesús Guerra-Hernandez ◽  
María Jiménez-Valera ◽  
...  

In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01–105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.


2020 ◽  
Vol 8 (10) ◽  
pp. 1583
Author(s):  
Evangelos Kokkinomagoulos ◽  
Anastasios Nikolaou ◽  
Yiannis Kourkoutas ◽  
Panagiotis Kandylis

In the present study, three commercial yeasts (for wine, beer, and cider) were evaluated for the production of pomegranate alcoholic beverage (PAB) from a juice of Wonderful variety. The physicochemical characteristics, antioxidant activity, and aromatic profiles of PABs were investigated before and after fermentation, while the effect of yeast strain and fermentation temperature (15 and 25 °C) was also evaluated. The PABs contained ethanol in the ranges of 5.6–7.0% v/v, in combination with glycerol (2.65–6.05 g L−1), and low volatile acidity. Total flavonoid content, total phenolic content, free radical-scavenging activity, and total monomeric anthocyanin content appeared to decrease after fermentation, possibly due to hydrolysis, oxidation, and other reactions. In general, PABs retained 81–91% of free radical-scavenging activity, 29–41% of phenolics, 24–55% of flavonoids, and 66–75% of anthocyanins. The use of different yeast affected mainly flavonoids and anthocyanins, and yeast strain M02 resulted in the highest values after fermentation. In PABs, 30 different volatile compounds were identified, specifically 15 esters, 4 organic acids, 8 alcohols, and 3 terpenes. The principal component analysis showed that the fermentation temperature affected significantly volatile composition, whereas, among the yeasts, WB06 is the one that seems to differentiate. The findings of this study show that the selection of the appropriate yeast and fermentation temperature is very crucial and affects the characteristics of the final product.


Author(s):  
Sanjay Kumar ◽  
Mohammad S Javed ◽  
Pawan Kumar ◽  
Rishendra Kumar

Objectives: The aim of our study was to evaluate the phytogenic chemical compounds and assess their antibacterial and antioxidant activity of essential oil of Ajuga parviflora Benth. growing in the Himalayan region. Methods: In the present study, the phytochemical constituents of essential oil were isolated by steam distillation and screened by gas chromatography (GC) and GC–mass spectrometry (GC-MS) analysis from A. parviflora is rich in oxygenated monoterpenoids and sesquiterpenoids. The essential oil was further evaluated for their antibacterial by well-diffusion method and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay at various concentrations. Results: The major chemical constituents were α-cadinol (21.36%), α-muurolol (14.2%), cubebol (12.76%), germacrene D-4-ol (9.6%), germacrene D (4.32%), farnesyl acetate (3.58%), longifolol acetate (2.76%), and β-bourbonene (2.35 %) whereas monoterpenoids were minor constituents. The zone of inhibition (ZOI) shown by essential oil against test bacterial strains at concentration of 500 μg/ml to Gram-negative bacteria Pseudomonas aeruginosa (5.6 mm), Escherichia coli (5 mm), Salmonella typhimurium (8.6 mm), and Proteus vulgaris (10.7 mm) and Gram-positive bacteria Bacillus subtilis (8.3 mm). At the same time, ZOI of standard antibiotic ciprofloxacin against test bacterial strains was P. aeruginosa (9.6 mm), E. coli (14.3mm), S. typhimurium (19.3 mm), P. vulgaris (17.8 mm), and B. subtilis (20.6 mm), respectively. The free radical scavenging property of A. parviflora employed by in vitro assay methods like scavenging activity of DPPH was 81% at 500 μg/ml concentrations, respectively. Conclusion: Our study showed that α-cadinol, α-muurolol, and cubebol as the major components in this oil which was absent in previous findings of A. parviflora and essential oil had potent antibacterial and antioxidant activity, respectively.


Author(s):  
GAURAV SHARMA ◽  
ANKITA THAKUR ◽  
SOHAN LAL ◽  
ROHIT KUMAR NADDA

Objective: The objective of the present study was the analysis of phytochemicals in various extracts of Azadirachta indica leaves, comparative evaluation of antibacterial activity of the various extracts of A. indica leaves against Escherichia coli and Staphylococcus aureus, and comparative evaluation of antioxidant activity in various extracts of A. indica leaves using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Methods: Various extracts were prepared by crushing the samples. Antibacterial susceptibility test, various phytochemical tests for qualitative analysis, and DPPH radical scavenging assay for antioxidant activity were performed. Results: The result suggested that alkaloids, flavonoids, and terpenoids were present in all the four extracts. Tannins were absent in the ethyl acetate extract, and phenols were only present in the ethyl acetate extract. Sterols and phlobatannins were absent in all the four extracts. Saponins were only present in the aqueous extract, and amino acids were only present in the ethyl acetate extract. The bacterial strains S. aureus and E. coli were used against the different extracts of A. indica leaves, i.e., methanol, chloroform, ethyl acetate, and aqueous. Conclusion: The results suggested that bioactive compounds found in leaves of A. indica contribute to its pharmacological activities.


2010 ◽  
Vol 5 (7) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Baojun Shi ◽  
Wei Liu ◽  
Shao-peng Wei ◽  
Wen-jun Wu

The essential oil from the roots of Bupleurum longiradiatum, obtained by hydrodistillation was analyzed by gas chromatography/mass spectrometry (GC/MS) and evaluated for antimicrobial activity and antioxidant activity. Fifty-one compounds were identified, representing 99.3% of the total oil. The major constituents were thymol (7.0%), butylidene phthalide (6.8%), 5-indolol (5.6%), heptanal (5.3%), 4-hydroxy-2-methylacetophenone (5.3%), 4,5-diethyl-octane (5.3%), bormeol (5.1%) and hexanoic acid (5.1%). The oil was tested against 4 bacteria at different concentrations using disc diffusion and 96-well dilution methods. The inhibition zones and minimum inhibitory concentration values for bacterial strains were in the range of 7.0–18.0 mm and 250 −500 μg/mL, respectively. The in vitro antioxidant activity was assessed by DPPH radical scavenging and inhibition of lipid peroxidation methods. The oil showed a potent free radical scavenging activity, as evidenced by the low IC50 value for DPPH radical (566.2μg/mL) and inhibition of lipid peroxidation (induced by FeSO4, H2O2 and CCl4) with IC50 values of 275.2 μg/mL, 296.9 μg/mL and 118.7 μg/mL, respectively.


Author(s):  
Rengaswamy Rathi ◽  
Sathyaneson Satheesh

AbstractChlorination is a common antifouling method adopted by industrial units to minimize the fouling growth on cooling systems. In the present study, the effect of sodium hypochlorite on extracellular polymeric substance (EPS) production, hydrophobicity, cell adhesion and viability of marine bacteria involved in biofilm formation were assessed in laboratory condition. Two bacterial strains, tentatively identified as Alteromonas sp. and Pseudomonas sp. isolated from the surface of seaweeds were used as test organisms for the present study. The bacterial cultures were treated with sodium hypochlorite at 25% of the minimum inhibitory concentration. Results showed considerable variation in the production of EPS, viable counts, hydrophobicity and adhesion ability of bacteria treated with sodium hypochlorite. In general, the present study indicated that chlorination affects some important characteristics involved in the biofilm formation and thereby reduces the adhesion rate on surfaces.


Sign in / Sign up

Export Citation Format

Share Document