scholarly journals Vascular Aging in the Invertebrate Chordate, Botryllus schlosseri

2021 ◽  
Vol 8 ◽  
Author(s):  
Delany Rodriguez ◽  
Daryl A. Taketa ◽  
Roopa Madhu ◽  
Susannah Kassmer ◽  
Dinah Loerke ◽  
...  

Vascular diseases affect over 1 billion people worldwide and are highly prevalent among the elderly, due to a progressive deterioration of the structure of vascular cells. Most of our understanding of these age-related cellular changes comes from in vitro studies on human cell lines. Further studies of the mechanisms underlying vascular aging in vivo are needed to provide insight into the pathobiology of age-associated vascular diseases, but are difficult to carry out on vertebrate model organisms. We are studying the effects of aging on the vasculature of the invertebrate chordate, Botryllus schlosseri. This extracorporeal vascular network of Botryllus is transparent and particularly amenable to imaging and manipulation. Here we use a combination of transcriptomics, immunostaining and live-imaging, as well as in vivo pharmacological treatments and regeneration assays to show that morphological, transcriptional, and functional age-associated changes within vascular cells are key hallmarks of aging in B. schlosseri, and occur independent of genotype. We show that age-associated changes in the cytoskeleton and the extracellular matrix reshape vascular cells into a flattened and elongated form and there are major changes in the structure of the basement membrane over time. The vessels narrow, reducing blood flow, and become less responsive to stimuli inducing vascular regression. The extracorporeal vasculature is highly regenerative following injury, and while age does not affect the regeneration potential, newly regenerated vascular cells maintain the same aged phenotype, suggesting that aging of the vasculature is a result of heritable epigenetic changes.

2020 ◽  
Vol 21 (8) ◽  
pp. 2889 ◽  
Author(s):  
Pei-Li Yao ◽  
Jeremy Peavey ◽  
Goldis Malek

Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.


2010 ◽  
Vol 10 ◽  
pp. 145-160 ◽  
Author(s):  
Inga Wessels ◽  
Judith Jansen ◽  
Lothar Rink ◽  
Peter Uciechowski

All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN) is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies betweenin vivoandin vitroresults, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.


2017 ◽  
Vol 26 (9) ◽  
pp. 1520-1529 ◽  
Author(s):  
Payal Ganguly ◽  
Jehan J. El-Jawhari ◽  
Peter V. Giannoudis ◽  
Agata N. Burska ◽  
Frederique Ponchel ◽  
...  

Aging at the cellular level is a complex process resulting from accumulation of various damages leading to functional impairment and a reduced quality of life at the level of the organism. With a rise in the elderly population, the worldwide incidence of osteoporosis (OP) and osteoarthritis (OA) has increased in the past few decades. A decline in the number and “fitness” of mesenchymal stromal cells (MSCs) in the bone marrow (BM) niche has been suggested as one of the factors contributing to bone abnormalities in OP and OA. It is well recognized that MSCs in vitro acquire culture-induced aging features such as gradual telomere shortening, increased numbers of senescent cells, and reduced resistance to oxidative stress as a result of serial population doublings. In contrast, there is only limited evidence that human BM-MSCs “age” similarly in vivo. This review compares the various aspects of in vitro and in vivo MSC aging and suggests how our current knowledge on rejuvenating cultured MSCs could be applied to develop future strategies to target altered bone formation processes in OP and OA.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
Po-Ching Chu ◽  
Charlene Wu ◽  
Ta-Chen Su

Endothelial function is crucial in the pathogenesis of circulatory and cardiovascular toxicity; epidemiologic research investigating the association between phthalate exposure and endothelial dysfunction remains limited. We examined the associations between exposures to specific phthalates (di-2-ethylhexyl phthalate, DEHP; di-n-butyl phthalate, DnBP) and circulating endothelial and platelet microparticles (EMPs and PMPs) in adolescents and young adults. Of the 697 participants recruited, anthropometric measurements and health-related behaviors relevant to cardiovascular risks were collected and assessed. Urine and serum were collected and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and flow cytometry. Multiple linear regression indicated that increases in urinary concentrations of ΣDEHP and MnBP (mono-n-butyl phthalate), across quartiles, were positively associated with serum EMPs level (p for trend <0.001 and <0.001; β = 0.798 and 0.007; standard error = 0.189 and 0.001, respectively). Moreover, female and overweight subjects had higher MnBP, and males were more vulnerable to DnBP exposure compared to females. In conclusion, our results demonstrate a dose-response relationship between exposures to phthalates (ΣDEHP and MnBP) and microparticle formation (EMPs and PMPs) in adolescents and young adults. The findings indicate that exposures to phthalates of both low and high-molecular weight are positively associated with microparticle production, and might contribute to endothelial dysfunction; such damage might manifest in the form of atherosclerotic-related vascular diseases. Future in vivo and in vitro studies are warranted to elucidate whether a causal relationship exists between phthalate exposure and EMPs and PMPs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1206
Author(s):  
Aimilia D. Sklirou ◽  
Maria T. Angelopoulou ◽  
Aikaterini Argyropoulou ◽  
Eliza Chaita ◽  
Vasiliki Ioanna Boka ◽  
...  

Skin health is heavily affected by ultraviolet irradiation from the sun. In addition, senile skin is characterized by major changes in the collagen, elastin and in the hyaluronan content. Natural products (NPs) have been shown to delay cellular senescence or in vivo aging by regulating age-related signaling pathways. Moreover, NPs are a preferable source of photoprotective agents and have been proven to be useful against the undesirable skin hyperpigmentation. Greek flora harvests great plant diversity with approximately 6000 plant species, as it has a wealth of NPs. Here, we report an extensive screening among hundreds of plant species. More than 440 plant species and subspecies were selected and evaluated. The extracts were screened for their antioxidant and anti-melanogenic properties, while the most promising were further subjected to various in vitro and cell-based assays related to skin aging. In parallel, their chemical profile was analyzed with High-Performance Thin-Layer Chromatography (HPTLC) and/or Ultra-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-HRMS). A variety of extracts were identified that can be of great value for the cosmetic industry, since they combine antioxidant, photoprotective, anti-melanogenic and anti-aging properties. In particular, the methanolic extracts of Sideritis scardica and Rosa damascena could be worthy of further attention, since they showed interesting chemical profiles and promising properties against specific targets involved in skin aging.


Sign in / Sign up

Export Citation Format

Share Document