scholarly journals ARID1A Variations in Cholangiocarcinoma: Clinical Significances and Molecular Mechanisms

2021 ◽  
Vol 11 ◽  
Author(s):  
Shankun Zhao ◽  
Youwen Xu ◽  
Weizhou Wu ◽  
Pan Wang ◽  
Yichao Wang ◽  
...  

Cholangiocarcinoma (CCA), a high mortality malignant carcinoma characterized by advanced disease and frequent recurrence, constitutes a major challenge for treatment and prognosis. AT-rich interaction domain 1A (ARID1A) variation is a distinct genetic entity in CCA, getting mounting concerns recently. Here, we comprehensively reviewed the clinical significance and molecular mechanisms of ARID1A alterations in CCA. Based on the independent data derived from 29 relevant studies, the variation rate of ARID1A in intrahepatic and extrahepatic CCA is reported at 6.9–68.2% and 5–55%, respectively. Most of the included studies (28/29, 96.6%) suggest that ARID1A serves as a tumor suppressor in CCA. ARID1A variation may be an important prognostic indicator to predict disease mortality, metastasis, and recurrence in patients with CCA. Multifactorial molecular mechanisms are involved in the relationship between ARID1A variations and the pathogenesis and pathophysiology of CCA, including disruption of the cell cycle, chromatin remodeling, oxidative stress damage, DNA hypermethylation, and the interaction of multiple genes being affected. This review describes that ARID1A variation might be a potential diagnostic and prognostic biomarker for CCA. Future diagnoses and treatments targeting ARID1A hint towards a precision medicine strategy in the management of CCA.

2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Narges Dastmalchi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Mirsaed Miri Nargesi ◽  
Reza Safaralizadeh

ABSTRACT Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 868
Author(s):  
Jiayang Zhang ◽  
Ruoyu Sun ◽  
Tingting Jiang ◽  
Guangrui Yang ◽  
Lihong Chen

Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.


2021 ◽  
Vol 22 (10) ◽  
pp. 5227
Author(s):  
Yu Sawada ◽  
Motonobu Nakamura

Daily lifestyle is a fundamental part of human life and its influence accumulates daily in the human body. We observe that a good daily lifestyle has a beneficial impact on our health; however, the actual effects of individual daily lifestyle factors on human skin diseases, especially skin cancers, have not been summarized. In this review, we focused on the influence of daily lifestyle on the development of skin cancer and described the detailed molecular mechanisms of the development or regulation of cutaneous malignancies. Several daily lifestyle factors, such as circadian rhythm disruption, smoking, alcohol, fatty acids, dietary fiber, obesity, and ultraviolet light, are known to be associated with the risk of cutaneous malignancies, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and Merkel cell carcinoma. Although the influence of some daily lifestyles on the risk of skin cancers is controversial, this review provides us a better understanding of the relationship between daily lifestyle factors and skin cancers.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chengquan Shen ◽  
Jing Liu ◽  
Jirong Wang ◽  
Xiaokun Yang ◽  
Haitao Niu ◽  
...  

PTPN6 (protein tyrosine phosphatase nonreceptor type 6), a tyrosine phosphatase, is known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Previous studies have demonstrated that PTPN6 expression is relatively elevated in several malignancies. However, the role of PTPN6 in bladder cancer (BC) remains unclear. The purpose of this study was to explore the prognostic value of PTPN6 in BC. RNA-seq data from The Cancer Genome Atlas (TCGA) was used to identify the expression level of PTPN6 in BC. The relationship between clinical pathologic features and PTPN6 were analyzed with the Wilcoxon signed-rank test. The prognostic and predictive value of PTPN6 was evaluated by survival analysis and nomogram. Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential molecular mechanisms of PTPN6 in BC. Finally, Tumor Immune Estimation Resource (TIMER) was applied to investigate the relationship between PTPN6 and immune cell infiltration in the tumor microenvironment. Results indicated that PTPN6 was overexpressed in BC tissues compared with normal bladder tissues and was significantly correlated with grade, stage, T, and N. Survival analysis showed that low expression of PTPN6 was significantly related to the poor overall survival (OS) in BC patients. Coexpression analysis showed that PTPN6 and TNFRSF14 (Tumor necrosis factor receptor superfamily member 14) have a close correlation in BC. GSEA showed that multiple cancer-associated signaling pathways are differentially enriched in the PTPN6 high expression phenotype. Moreover, the expression level of PTPN6 was positively associated with the infiltration of B cells, CD4+T cells, dendritic cells, and neutrophils and negatively associated with CD8+ T cells and macrophages in BC. In conclusion, we identified that PTPN6 may be a novel prognostic biomarker in BC based on the TCGA database. Further clinical trials are needed to confirm our observations and mechanisms underlying the prognostic value of PTPN6 in BC also deserve further experimental exploration.


2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Ji-sheng Jing ◽  
Hongbo Li ◽  
Shun-cai Wang ◽  
Jiu-ming Ma ◽  
La-qing Yu ◽  
...  

N-myc downstream-regulated gene 3 (NDRG3), an important member of the NDRG family, is involved in cell proliferation, differentiation, and other biological processes. The present study analyzed NDRG3 expression in hepatocellular carcinoma (HCC) and explored the relationship between expression of NDRG3 in HCC patients and their clinicopathological characteristics. We performed quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis and immunohistochemistry (IHC) analyses on HCC tissues to elucidate NDRG3 expression characteristics in HCC patients. Kaplan–Meier survival curve and Cox regression analyses were used to evaluate the prognoses of 102 patients with HCC. The results revealed that compared with non-tumor tissues, HCC tissues showed significantly higher NDRG3 expression. In addition, our analyses showed that NDRG3 expression was statistically associated with tumor size (P=0.048) and pathological grade (P=0.001). Survival analysis and Kaplan–Meier curves revealed that NDRG3 expression is an independent prognostic indicator for disease-free survival (P=0.002) and overall survival (P=0.005) in HCC patients. The data indicate that NDRG3 expression may be considered as a oncogenic biomarker and a novel predictor for HCC prognosis.


Author(s):  
Chao Zhang ◽  
Zhenyu Quan ◽  
Qincheng Wu ◽  
Zhezhen Jin ◽  
Joseph Lee ◽  
...  

Background: Air pollution in large Chinese cities has led to recent studies that highlighted the relationship between particulate matters (PM) and elevated risk of cardio-cerebrovascular mortality. However, it is unclear as to whether: (1) The same adverse relations exist in cities with relatively low levels of air pollution; and (2) the relationship between the two are similar across ethnic groups. Methods: We collected data of PM2.5 (PM with an aerodynamic diameter ≤ 2.5 µm) and PM10 (aerodynamic diameter ≤ 10 µm) in the Yanbian Korean Autonomous Prefecture between 1 January 2015 and 31 December 2016. Using a time-stratified case-crossover design, we investigated whether levels of particulate pollutants influence the risk of cardio-cerebrovascular disease mortality among ethnic Korean vs. ethnic Han residents residing in the Yanbian Korean Autonomous Prefecture. Results: Under the single air pollutant model, the odds ratios (ORs) of cardio-cerebrovascular disease were 1.025 (1.024–1.026) for each 10 μg/m3 increase in PM2.5 at lag0 day, 1.012 (1.011–1.013) for each 10 μg/m3 increase in PM10 at lag1 day. In the multi-pollutant model adjusted by PM10, SO2, and NO2, the ORs of cardio-cerebrovascular disease were 1.150 (1.145–1.155) for ethnic Koreans and 1.154 (1.149–1.158) for ethnic Hans for each 10 μg/m3 increase in PM2.5. In the multi-pollutant model adjusted by PM2.5, SO2, and NO2, the ORs of cardio-cerebrovascular disease were 1.050 (1.047–1.053) for ethnic Koreans and 1.041 (1.039–1.043) for ethnic Hans for each 10 μg/m3 increase in PM10. Conclusion: This study showed that PM2.5 and PM10 were associated with increased risks of acute death events in residential cardio-cerebrovascular disease in Yanbian, China.


Sign in / Sign up

Export Citation Format

Share Document