scholarly journals Genome-Wide Identification of lncRNAs Involved in Fertility Transition in the Photo-Thermosensitive Genic Male Sterile Rice Line Wuxiang S

2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Wang ◽  
Hongyuan Zhang ◽  
Qian Li ◽  
Jing Jin ◽  
Hao Chen ◽  
...  

Long non-coding RNAs (lncRNAs) act as universal regulators of various biological processes, but no genome-wide screening of lncRNAs involved in the fertility transition of the photo-thermosensitive genic male sterile (PTGMS) rice line has been reported. Here, we performed strand-specific RNA sequencing at three developmental stages of a novel PTGMS line Wuxiang S (WXS). A total of 3,948 lncRNAs were identified; 622 of these were detected as differentially expressed lncRNAs (DE-lncRNAs) between male-sterile WXS (WXS-S) and male-fertile WXS (WXS-F). A large proportion of lncRNAs differentially expressed at the stage of pollen mother cells meiosis, suggested that it may be the most critical stage for fertility transition of WXS. Furthermore, functional annotation of the cis- and trans- targets of DE-lncRNAs showed that 150 targets corresponding to 141 DE-lncRNAs were identified as involved in anther and pollen development. Moreover, computational analysis predicted 97 lncRNAs as precursors for 72 miRNAs, and 94 DE-lncRNAs as potential endogenous target mimics (eTMs) for 150 miRNAs. Finally, using the dual luciferase reporter assays, we demonstrated that two lncRNAs act as eTMs to regulate the expression of the SPL and GRF genes by competing for the shared osa-miR156 and osa-miR396, respectively. These genomic characteristics, differential expression, and interaction of lncRNAs with miRNAs and mRNAs contribute to our understanding of the roles of lncRNAs during the fertility transition in PTGMS rice lines.

2019 ◽  
Vol 86 (4) ◽  
pp. 425-431 ◽  
Author(s):  
Zhi Chen ◽  
Jingpeng Zhou ◽  
Xiaolong Wang ◽  
Yang Zhang ◽  
Xubin Lu ◽  
...  

AbstractWe established a mastitis model using exogenous infection of the mammary gland of Chinese Holstein cows with Staphylococcus aureus and extracted total RNA from S. aureus-infected and healthy mammary quarters. Differential expression of genes due to mastitis was evaluated using Affymetrix technology and results revealed a total of 1230 differentially expressed mRNAs. A subset of affected genes was verified via Q-PCR and pathway analysis. In addition, Solexa high-throughput sequencing technology was used to analyze profiles of miRNA in infected and healthy quarters. These analyses revealed a total of 52 differentially expressed miRNAs. A subset of those results was verified via Q-PCR. Bioinformatics techniques were used to predict and analyze the correlations among differentially expressed miRNA and mRNA. Results revealed a total of 329 pairs of negatively associated miRNA/mRNA, with 31 upregulated pairs of mRNA and 298 downregulated pairs of mRNA. Differential expression of miR-15a and interleukin-1 receptor-associated kinase-like 2 (IRAK2), were evaluated by western blot and luciferase reporter assays. We conclude that miR-15a and miR-15a target genes (IRAK2) constitute potential miRNA–mRNA regulatory pairs for use as biomarkers to predict a mastitis response.


2019 ◽  
Vol 20 (18) ◽  
pp. 4542
Author(s):  
Hao Chen ◽  
Jing Jin ◽  
Hongyuan Zhang ◽  
Ying Wang ◽  
Qian Li ◽  
...  

The two-line hybrid rice is an important factor of a global crop, but its fertility transition mechanism is unclear. Here, a comparative proteomics and transcriptomics analysis was completed on the two-line hybrid rice line Wuxiang S (WXS) to explore its molecular mechanism and protein regulation during fertility transition. A total of 340 differentially abundant proteins (DAPs) were identified using iTRAQ between the pollen mother cell formation stage (P2) and the meiosis stage (P3). There were 3541 and 4247 differentially expressed genes (DEGs) in P2 and P3 between WXS (Sterile, S)-WXS(S) and WXS (Fertile, F)-WXS(F), respectively, of which 92 and 71 DEGs had corresponding DAPs. Among the DAPs and DEGs, 65 (SP2 vs. FP2) and 55 (SP3 vs. FP3) corresponding DEGs and DAPs (cor-DEGs-DAPs) showed the same expression trend, indicating the cor-DEGs-DAPs genes might play vital roles in WXS fertility transition. Further analysis indicated that cor-DEGs-DAPs proteins were related to energy metabolism-related proteins in anther development and were accompanied by the activation of the stress response pathway and modifications to the cell wall, which ultimately affected the fertility transition of the PTGMS rice line WXS.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyan Zhao ◽  
Jianshe Wang ◽  
Yunfang Qu ◽  
Renhai Peng ◽  
Richard Odongo Magwanga ◽  
...  

Abstract Background Cotton is an important fiber crop but has serious heterosis effects, and cytoplasmic male sterility (CMS) is the major cause of heterosis in plants. However, to the best of our knowledge, no studies have investigated CMS Yamian A in cotton with the genetic background of Australian wild Gossypium bickii. Conjoint transcriptomic and proteomic analysis was first performed between Yamian A and its maintainer Yamian B. Results We detected 550 differentially expressed transcript-derived fragments (TDFs) and at least 1013 proteins in anthers at various developmental stages. Forty-two TDFs and 11 differentially expressed proteins (DEPs) were annotated by analysis in the genomic databases of G. austral, G. arboreum and G. hirsutum. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to better understand the functions of these TDFs and DEPs. Transcriptomic and proteomic results showed that UDP-glucuronosyl/UDP-glucosyltransferase, 60S ribosomal protein L13a-4-like, and glutathione S-transferase were upregulated; while heat shock protein Hsp20, ATPase, F0 complex, and subunit D were downregulated at the microspore abortion stage of Yamian A. In addition, several TDFs from the transcriptome and several DEPs from the proteome were detected and confirmed by quantitative real-time PCR as being expressed in the buds of seven different periods of development. We established the databases of differentially expressed genes and proteins between Yamian A and its maintainer Yamian B in the anthers at various developmental stages and constructed an interaction network based on the databases for a comprehensive understanding of the mechanism underlying CMS with a wild cotton genetic background. Conclusion We first analyzed the molecular mechanism of CMS Yamian A from the perspective of omics, thereby providing an experimental basis and theoretical foundation for future research attempting to analyze the abortion mechanism of new CMS with a wild Gossypium bickii background and to realize three-line matching.


Author(s):  
Shengnan Cong ◽  
Jinlong Li ◽  
Jingjing Zhang ◽  
Jingyi Feng ◽  
Aixia Zhang ◽  
...  

Lubrication disorder is a common health issue that manifests as insufficient sexual arousal at the beginning of sex. It often causes physical and psychological distress. However, there are few studies on lubrication disorder, and the complexity of circular RNA (circRNA) and the related competing endogenous RNA (ceRNA) network in lubrication disorder is still poorly known. Therefore, this study aims to build a regulatory circRNA-micro (mi)RNA-mRNA network and explore potential molecular markers of lubrication disorder. In the study, 12 subjects were recruited, including 6 in the lubrication disorder group and 6 in the normal control group. RNA sequencing was exploited to identify the expression profiles of circRNA, miRNA and mRNA between two groups, and then to construct the circRNA-miRNA-mRNA networks. The enrichment analyses of the differentially expressed (DE)-mRNAs were examined via Gene Set Enrichment Analysis (GSEA). Furthermore, the expression level and interactions among circRNA, miRNA, and mRNA were validated using real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assays. In the results, 73 circRNAs, 287 miRNAs, and 354 target mRNAs were differentially expressed between two groups when taking | Log2 (fold change)| > 1 and P-value < 0.05 as criteria, and then the results of GSEA revealed that DE-mRNAs were linked with “vascular smooth muscle contraction,” “aldosterone regulated sodium reabsorption,” “calcium signaling pathway,” etc. 19 target relationships among 5 circRNAs, 4 miRNAs, and 7 mRNAs were found and constructed the ceRNA network. Among them, hsa-miR-212-5p and hsa-miR-874-3p were demonstrated to be related to the occurrence of lubrication disorder. Eventually, consistent with sequencing, RT-qPCR showed that hsa_circ_0026782 and ASB2 were upregulated while hsa-miR-874-3p was downregulated, and dual-luciferase reporter assays confirmed the interactions among them. In summary, the findings indicate that the circRNA-miRNA-mRNA regulatory network is presented in lubrication disorder, and ulteriorly provide a deeper understanding of the specific regulatory mechanism of lubrication disorder from the perspective of the circRNA-miRNA-mRNA network.


2020 ◽  
Vol 21 (24) ◽  
pp. 9754
Author(s):  
Le Xu ◽  
Jiao Zhang ◽  
Anran Zhan ◽  
Yaqin Wang ◽  
Xingzhou Ma ◽  
...  

Many insects are capable of developing two types of wings (i.e., wing polyphenism) to adapt to various environments. Though the roles of microRNAs (miRNAs) in regulating animal growth and development have been well studied, their potential roles in modulating wing polyphenism remain largely elusive. To identify wing polyphenism-related miRNAs, we isolated small RNAs from 1st to 5th instar nymphs of long-wing (LW) and short-wing (SW) strains of the brown planthopper (BPH), Nilaparvata lugens. Small RNA libraries were then constructed and sequenced, yielding 158 conserved and 96 novel miRNAs. Among these, 122 miRNAs were differentially expressed between the two BPH strains. Specifically, 47, 2, 27 and 41 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the LW strain compared with the SW strain. In contrast, 47, 3, 29 and 25 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the SW strain compared with the LW strain. Next, we predicted the targets of these miRNAs and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. We found that a number of pathways might be involved in wing form determination, such as the insulin, MAPK, mTOR, FoxO and thyroid hormone signaling pathways and the thyroid hormone synthesis pathway. Thirty and 45 differentially expressed miRNAs targeted genes in the insulin signaling and insect hormone biosynthesis pathways, respectively, which are related to wing dimorphism. Among these miRNAs, Nlu-miR-14-3p, Nlu-miR-9a-5p and Nlu-miR-315-5p, were confirmed to interact with insulin receptors (NlInRs) in dual luciferase reporter assays. These discoveries are helpful for understanding the miRNA-mediated regulatory mechanism of wing polyphenism in BPHs and shed new light on how insects respond to environmental cues through developmental plasticity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Liu ◽  
Chenggang Ou ◽  
Shumin Chen ◽  
Qiongwen Cao ◽  
Zhiwei Zhao ◽  
...  

AbstractPetaloid cytoplasmic male sterility (CMS) is a maternally inherited loss of male fertility due to the complete conversion of stamens into petal-like organs, and CMS lines have been widely utilized in carrot breeding. Petaloid CMS is an ideal model not only for studying the mitochondrial–nuclear interaction but also for discovering genes that are essential for floral organ development. To investigate the comprehensive mechanism of CMS and homeotic organ alternation during carrot flower development, we conducted transcriptome analysis between the petaloid CMS line (P2S) and its maintainer line (P2M) at four flower developmental stages (T1–T4). A total of 2838 genes were found to be differentially expressed, among which 1495 genes were significantly downregulated and 1343 genes were significantly upregulated in the CMS line. Functional analysis showed that most of the differentially expressed genes (DEGs) were involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, and biosynthesis. A total of 16 MADS-box genes were grouped into class A, B, C, and E, but not class D, genes. Several key genes associated with oxidative phosphorylation showed continuously low expression from stage T2 in P2S, and the expression of DcPI and DcAG-like genes also greatly decreased at stage T2 in P2S. This indicated that energy deficiency might inhibit the expression of B- and C-class MADS-box genes resulting in the conversion of stamens into petals. Stamen petaloidy may act as an intrinsic stress, upregulating the expression of heat shock protein (HSP) genes and MADS-box genes at stages T3 and T4 in P2S, which results in some fertile revertants. This study will provide a better understanding of carrot petaloid CMS and floral development as a basis for further research.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pei Cao ◽  
Wenjuan Fan ◽  
Pengjia Li ◽  
Yuxin Hu

Abstract Background Long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of plant growth and development. Recent transcriptomic analyses have revealed the gene expression profiling in wheat spike development, however, the possible regulatory roles of lncRNAs in wheat spike morphogenesis remain largely unclear. Results Here, we analyzed the genome-wide profiling of lncRNAs during wheat spike development at six stages, and identified a total of 8,889 expressed lncRNAs, among which 2,753 were differentially expressed lncRNAs (DE lncRNAs) at various developmental stages. Three hundred fifteen differentially expressed cis- and trans-regulatory lncRNA-mRNA pairs comprised of 205 lncRNAs and 279 genes were predicted, which were found to be mainly involved in the stress responses, transcriptional and enzymatic regulations. Moreover, the 145 DE lncRNAs were predicted as putative precursors or target mimics of miRNAs. Finally, we identified the important lncRNAs that participate in spike development by potentially targeting stress response genes, TF genes or miRNAs. Conclusions This study outlines an overall view of lncRNAs and their possible regulatory networks during wheat spike development, which also provides an alternative resource for genetic manipulation of wheat spike architecture and thus yield.


2019 ◽  
Vol 20 (13) ◽  
pp. 1147-1154 ◽  
Author(s):  
Ling Chen ◽  
Qian Li ◽  
Xun Lu ◽  
Xiaohua Dong ◽  
Jingyun Li

<P>Objective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers. However, the function of miR-340-5p in skin fibroblasts remains largely unknown. </P><P> Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p with the 3&#039;UTR of Kruppel-like factor 2 (KLF2). </P><P> Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19 downregulated transcripts in the miR-340-5p overexpression group compared with those in the control group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process, membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays showed that miR-340-5p binds to the 3&#039;UTR of KLF2. Forced expression of miR-340-5p decreased the expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation in the miR-340-5p overexpression group. </P><P> Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly through targeting KLF2. These findings could help us understand the function of miR-340-5p in skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.</P>


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Wu ◽  
Chengying Li ◽  
Bin Xu ◽  
Ying Xiang ◽  
Xiaoyue Jia ◽  
...  

Abstract Background Circular RNA (circRNA) have been reported to play important roles in cardiovascular diseases including myocardial infarction and heart failure. However, the role of circRNA in atrial fibrillation (AF) has rarely been investigated. We recently found a circRNA hsa_circ_0099734 was significantly differentially expressed in the AF patients atrial tissues compared to paired control. We aim to investigate the functional role and molecular mechanisms of mmu_circ_0005019 which is the homologous circRNA in mice of hsa_circ_0099734 in AF. Methods In order to investigate the effect of mmu_circ_0005019 on the proliferation, migration, differentiation into myofibroblasts and expression of collagen of cardiac fibroblasts, and the effect of mmu_circ_0005019 on the apoptosis and expression of Ito, INA and SK3 of cardiomyocytes, gain- and loss-of-function of cell models were established in mice cardiac fibroblasts and HL-1 atrial myocytes. Dual-luciferase reporter assays and RIP were performed to verify the binding effects between mmu_circ_0005019 and its target microRNA (miRNA). Results In cardiac fibroblasts, mmu_circ_0005019 showed inhibitory effects on cell proliferation and migration. In cardiomyocytes, overexpression of mmu_circ_0005019 promoted Kcnd1, Scn5a and Kcnn3 expression. Knockdown of mmu_circ_0005019 inhibited the expression of Kcnd1, Kcnd3, Scn5a and Kcnn3. Mechanistically, mmu_circ_0005019 exerted biological functions by acting as a miR-499-5p sponge to regulate the expression of its target gene Kcnn3. Conclusions Our findings highlight mmu_circ_0005019 played a protective role in AF development and might serve as an attractive candidate target for AF treatment.


Sign in / Sign up

Export Citation Format

Share Document