scholarly journals Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1205
Author(s):  
Shubhadeep Roychoudhury ◽  
Barnali Sinha ◽  
Birupakshya Paul Choudhury ◽  
Niraj Kumar Jha ◽  
Partha Palit ◽  
...  

Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan-Yan Meng ◽  
Yu-Pei Yuan ◽  
Xin Zhang ◽  
Chun-Yan Kong ◽  
Peng Song ◽  
...  

Oxidative stress and cardiomyocyte apoptosis play critical roles in the development of doxorubicin- (DOX-) induced cardiotoxicity. Our previous study found that geniposide (GE) could inhibit cardiac oxidative stress and apoptosis of cardiomyocytes but its role in DOX-induced heart injury remains unknown. Our study is aimed at investigating whether GE could protect against DOX-induced heart injury. The mice were subjected to a single intraperitoneal injection of DOX (15 mg/kg) to induce cardiomyopathy model. To explore the protective effects, GE was orally given for 10 days. The morphological examination and biochemical analysis were used to evaluate the effects of GE. H9C2 cells were used to verify the protective role of GE in vitro. GE treatment alleviated heart dysfunction and attenuated cardiac oxidative stress and cell loss induced by DOX in vivo and in vitro. GE could activate AMP-activated protein kinase α (AMPKα) in vivo and in vitro. Moreover, inhibition of AMPKα could abolish the protective effects of GE against DOX-induced oxidative stress and apoptosis. GE could protect against DOX-induced heart injury via activation of AMPKα. GE has therapeutic potential for the treatment of DOX cardiotoxicity.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Kiessoun Konaté ◽  
Kassi Yomalan ◽  
Oksana Sytar ◽  
Patrice Zerbo ◽  
Marian Brestic ◽  
...  

Trichilia emeticaandOpilia amentaceatraditional Burkinabe medicinal plants were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of type 2 diabetes.In vitroandin vivoantioxidant and antihypertensive potential and antilipidemia and antihyperglycemia activities in an animal model of type 2 diabetes mellitus have been studied. The antioxidant activity of the flavonoids from leaves ofTrichilia emeticaandOpilia amentaceahas been evaluated usingβ-carotene-linoleic acid system, 1,1-diphenyl-2-picrylhydrazyl inhibitory activity, chelation of iron (II) ions, and lipid peroxidation which showed more pronounced antioxidant capacities ofTrichilia emetica. Total cholesterol concentrations decreased in an animal model of type 2 diabetes mellitus under effects of flavonoid-rich fractions from leaves ofTrichilia emeticaandOpilia amentaceahas been observed. Extract of flavonoid-rich fractions fromTrichilia emeticashown maximum radical scavenging activity and possessed marked antiamylase activity which may be due to the presence of certain secondary metabolites. Suggested better antihyperglycemia, antilipidemia, and antihypertensive properties of flavonoid-rich fractions fromTrichilia emeticacompared to the extract ofOpilia amentaceaare demonstrating antidiabetic potential ofTrichilia emeticaas therapeutic targets for the management of type 2 diabetes.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 477
Author(s):  
Giuseppe Caruso ◽  
Cristina Benatti ◽  
Nicolò Musso ◽  
Claudia G. Fresta ◽  
Annamaria Fidilio ◽  
...  

Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.


2020 ◽  
Vol 21 (10) ◽  
pp. 3579 ◽  
Author(s):  
Rebecca M. Haley ◽  
Sean T. Zuckerman ◽  
Hassan Dakhlallah ◽  
Jeffery R. Capadona ◽  
Horst A. von Recum ◽  
...  

Intracortical microelectrodes are valuable tools used to study and treat neurological diseases. Due in large part to the oxidative stress and inflammatory response occurring after electrode implantation, the signal quality of these electrodes decreases over time. To alleviate this response, resveratrol, a natural antioxidant which elicits neuroprotective effects through reduction of oxidative stress, was utilized. This work compares traditional systemic delivery of resveratrol to the novel cyclodextrin polymer (pCD) local delivery approach presented herein, both in vitro and in vivo. The pCD displayed an extended resveratrol release for 100 days, as well as 60 days of free radical scavenging activity in vitro. In vivo results indicated that our pCD delivery system successfully delivered resveratrol to the brain with a sustained release for the entire short-duration study (up to 7 days). Interestingly, significantly greater concentrations of resveratrol metabolites were found at the intracortical probe implantation site compared to the systemic administration of resveratrol. Together, our pilot results provide support for the possibility of improving the delivery of resveratrol in an attempt to stabilize long-term neural interfacing applications.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 380
Author(s):  
Katja Kramberger ◽  
Zala Jenko Pražnikar ◽  
Alenka Baruca Arbeiter ◽  
Ana Petelin ◽  
Dunja Bandelj ◽  
...  

Helichrysum arenarium (L.) Moench (abbrev. as HA) has a long tradition in European ethnomedicine and its inflorescences are approved as a herbal medicinal product. In the Mediterranean part of Europe, Helichrysum italicum (Roth) G. Don (abbrev. as HI) is more common. Since infusions from both plants are traditionally used, we aimed to compare their antioxidative potential using in vitro assays. Two morphologically distinct HI plants, HIa and HIb, were compared to a commercially available HA product. Genetic analysis using microsatellites confirmed a clear differentiation between HI and HA and suggested that HIb was a hybrid resulting from spontaneous hybridization from unknown HI subspecies. High-performance liquid chromatography–mass spectrometry analysis showed the highest amounts of hydroxycinnamic acids and total arzanol derivatives in HIa, whereas HIb was richest in monohydroxybenzoic acids, caffeic acids, and coumarins, and HA contained the highest amounts of flavonoids, especially flavanones. HIa exhibited the highest radical scavenging activity; it was more efficient in protecting different cell lines from induced oxidative stress and in inducing oxidative stress-related genes superoxide dismutase 1, catalase, and glutathione reductase 1. The antioxidative potential of HI was not only dependent on the morphological type of the plant but also on the harvest date, revealing important information for obtaining the best possible product. Considering the superior properties of HI compared to HA, the evaluation of HI as a medicinal plant could be recommended.


Author(s):  
Tania Islam ◽  
Md Nazrul Islam ◽  
Wahidu Zzaman ◽  
Md Morsaline Billah

An attempt has been made to evaluate antimicrobial, antioxidant and cytotoxicity properties of extracts from onion (Allium cepa L.), garlic (Allium sativum), leaves of guava (Psidium guajava), papaya (Carica papaya), tea (Camellia sinensis), baen (Avicennia alba) and keora (Sonneratia apetala), respectively to apply as natural preservatives for tomatoes. The air-dried plant materials of the respective plant species were subjected to ethanol-methanol extraction, concentrated and stored at 4 °C before use. The extracts were dissolved in 95% ethanol for analysis of antioxidant and antimicrobial properties. Of the extracts tested, tea extracts showed the highest zone of inhibition against several pathogenic bacteria (E. coli 35.0±3.2 mm; P. aeruginosa 29.3±2.6 mm; S. typhi 28.4±2.1 mm and S. pyogenes 27.7±3.7 mm) using the disc diffusion method. In regard to DPPH free radical scavenging assay, keora and guava extracts showed the highest percentage of radical scavenging activity with the values of 89.64± 0.18 and 89.39± 0.88, respectively, which were in agreement with higher total antioxidant capacity (TAC) of these extracts obtained by the phosphomolybdenum method. Brine shrimp lethality bioassay for cytotoxicity assessment showed LC50 of 132.54 ± 18.99 µg/mL for the leaf extract of keora which was found to be most toxic among all studied extracts. The initial results indicated that the extracts could be used for food preservative applications based on the antimicrobial, antioxidant and cytotoxicity properties of the tested extracts. However, efficacy, stability and safety issues need to be addressed with both in vitro and in vivo studies.


2017 ◽  
Author(s):  
Nicola J. Drummond ◽  
Nick O. Davies ◽  
Janet E. Lovett ◽  
Mark R. Miller ◽  
Graeme Cook ◽  
...  

AbstractExcessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson’s disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches. We show that, while it has radical scavenging ability on par with other flavonoids in a cell-free system, Proxison is orders of magnitude more potent than natural flavonoids at protecting neural cells against oxidative stress and is capable of rescuing damaged cells. The unique combination of a lipophilic hydrocarbon tail with a modified polyphenolic head group promotes efficient cellular uptake and mitochondrial localisation of Proxison. Importantly, in vivo administration of Proxison demonstrated effective and well tolerated neuroprotection against oxidative stress in a zebrafish model of dopaminergic neuronal loss.


Sign in / Sign up

Export Citation Format

Share Document