scholarly journals Cell-Laden Thermosensitive Chitosan Hydrogel Bioinks for 3D Bioprinting Applications

2020 ◽  
Vol 10 (7) ◽  
pp. 2455 ◽  
Author(s):  
Jongbeom Ku ◽  
Hoon Seonwoo ◽  
Sangbae Park ◽  
Kyoung-Je Jang ◽  
Juo Lee ◽  
...  

Three-dimensional (3D) bioprinting is a technology used to deposit cell-laden biomaterials for the construction of complex tissues. Thermosensitive hydrogels are physically cross-linked by non-covalent interaction without using crosslinkers, facilitating low cytotoxicity and cell viability. Chitosan, which is a non-toxic, biocompatible and biodegradable polysaccharide, can be used as a thermosensitive hydrogel. Therefore, chitosan hydrogel could be of potential use as a 3D bioprinting ink. The purpose of this study was to develop and compare the effectivity of different bioinks based on chitosan hydrogels for 3D bioprinting. The solvent type did not affect the gel shape and gelation time, whereas acetic acid exhibited better biocompatibility compared to lactic and hydrochloric acids. The nature of the gelling agent was found to have a stronger influence on these characteristics than that of the solvent. The NaHCO3 moiety exhibited a higher growth rate of the storage modulus (G′) and a more irregular porous structure than that of the β-glycerophosphate (β-GP) and K2HPO4 groups. Cell viability, and live and dead assays, showed that the NaHCO3 group was more efficient for cell adhesion. The type of gelling agent did not lead to appreciable differences in cell-laden constructs. The NaHCO3 group was more amenable to bioprinting, compared to the β-GP and K2HPO4 groups. The chitosan hydrogel bioinks could, therefore, be good candidates for 3D bioprinting and would pave the way for patient-specific regenerative medicines.

2021 ◽  
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of smart material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. Here, we reported on a novel thermosensitive hydrogel which can be 3D printed using extrusion based printing. Gel strength was found around 3kPa storage modulus with pronounced shear thinning and rapid recovery after stress. Addition of clay nanoparticles (Laponite XLG) improved the rheological profile further. Human adipose derived stem cells were added to the hydrogel matrix, which remained fully viable after printing. Therefore, the presented materials adds to the available material toolbox for 3D bioprinting. <br>


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3218 ◽  
Author(s):  
Natasha Antill-O’Brien ◽  
Justin Bourke ◽  
Cathal D. O’Connell

The ability to create three-dimensional (3D) models of brain tissue from patient-derived cells, would open new possibilities in studying the neuropathology of disorders such as epilepsy and schizophrenia. While organoid culture has provided impressive examples of patient-specific models, the generation of organised 3D structures remains a challenge. 3D bioprinting is a rapidly developing technology where living cells, encapsulated in suitable bioink matrices, are printed to form 3D structures. 3D bioprinting may provide the capability to organise neuronal populations in 3D, through layer-by-layer deposition, and thereby recapitulate the complexity of neural tissue. However, printing neuron cells raises particular challenges since the biomaterial environment must be of appropriate softness to allow for the neurite extension, properties which are anathema to building self-supporting 3D structures. Here, we review the topic of 3D bioprinting of neurons, including critical discussions of hardware and bio-ink formulation requirements.


Author(s):  
CONGCONG ZHAN ◽  
Yasong Hu ◽  
ANDUO ZHOU ◽  
SHANFENG ZHANG ◽  
Xia Huang

Three-dimensional (3D) bioprinting is a potential therapeutic method for tissue engineering owing to its ability to prepare cell-laden tissue constructs. The properties of bioink are crucial to accurately control the printing structure. Meanwhile, the effect of process parameters on the precise structure is not nonsignificant. We investigated the correlation between process parameters of 3D bioprinting and the structural response of κ-carrageenan-based hydrogels to explore the controllable structure, printing resolution, and cell survival rate. Small-diameter (<6 mm) gel filaments with different structures were printed by varying the shear stress of the extrusion bioprinter to simulate the natural blood vessel structure. The cell viability of the scaffold was evaluated. The in vitro culture of human umbilical vein endothelium cells (HUVECs) on the κ-carrageenan (kc) and composite gels (carrageenan/carbon nanotube and carrageenan/sodium alginate) demonstrated that the cell attachment and proliferation on composite gels were better than those on pure kc. Our results revealed that the carrageenan-based composite bioinks offer better printability, sufficient mechanical stiffness, interconnectivity, and biocompatibility. This process can facilitate precise adjustment of the pore size, porosity, and pore distribution of the hydrogel structure by optimising the printing parameters as well as realise the precise preparation of the internal structure of the 3D hydrogel-based tissue engineering scaffold. Moreover, we obtained perfused tubular filament by 3D printing at optimal process parameters.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Soja Saghar Soman ◽  
Sanjairaj Vijayavenkataraman

Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care applications.


2021 ◽  
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of smart material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. Here, we reported on a novel thermosensitive hydrogel which can be 3D printed using extrusion based printing. Gel strength was found around 3kPa storage modulus with pronounced shear thinning and rapid recovery after stress. Addition of clay nanoparticles (Laponite XLG) improved the rheological profile further. Human adipose derived stem cells were added to the hydrogel matrix, which remained fully viable after printing. Therefore, the presented materials adds to the available material toolbox for 3D bioprinting. <br>


2020 ◽  
Vol 7 (3) ◽  
pp. 108
Author(s):  
Lakshmi T. Somasekharan ◽  
Naresh Kasoju ◽  
Riya Raju ◽  
Anugya Bhatt

Layer-by-layer additive manufacturing process has evolved into three-dimensional (3D) “bio-printing” as a means of constructing cell-laden functional tissue equivalents. The process typically involves the mixing of cells of interest with an appropriate hydrogel, termed as “bioink”, followed by printing and tissue maturation. An ideal bioink should have adequate mechanical, rheological, and biological features of the target tissues. However, native extracellular matrix (ECM) is made of an intricate milieu of soluble and non-soluble extracellular factors, and mimicking such a composition is challenging. To this end, here we report the formulation of a multi-component bioink composed of gelatin and alginate -based scaffolding material, as well as a platelet-rich plasma (PRP) suspension, which mimics the insoluble and soluble factors of native ECM respectively. Briefly, sodium alginate was subjected to controlled oxidation to yield alginate dialdehyde (ADA), and was mixed with gelatin and PRP in various volume ratios in the presence of borax. The formulation was systematically characterized for its gelation time, swelling, and water uptake, as well as its morphological, chemical, and rheological properties; furthermore, blood- and cytocompatibility were assessed as per ISO 10993 (International Organization for Standardization). Printability, shape fidelity, and cell-laden printing was evaluated using the RegenHU 3D Discovery bioprinter. The results indicated the successful development of ADA–gelatin–PRP based bioink for 3D bioprinting and biofabrication applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 464
Author(s):  
Francesco Colucci ◽  
Vanessa Mancini ◽  
Clara Mattu ◽  
Monica Boffito

Regenerative pharmacology combines tissue engineering/regenerative medicine (TERM) with drug delivery with the aim to improve the outcomes of traditional TERM approaches. In this work, we aimed to design a multicomponent TERM platform comprising a three-dimensional scaffold, a thermosensitive hydrogel, and drug-loaded nanoparticles. We used a thermally induced phase separation method to obtain scaffolds with anisotropic mechanical properties, suitable for soft tissue engineering. A thermosensitive hydrogel was developed using a Poloxamer® 407-based poly(urethane) to embed curcumin-loaded nanoparticles, obtained by the single emulsion nanoprecipitation method. We found that encapsulated curcumin could retain its antioxidant activity and that embedding nanoparticles within the hydrogel did not affect the hydrogel gelation kinetics nor the possibility to progressively release the drug. The porous scaffold was easily loaded with the hydrogel, resulting in significantly enhanced (4-fold higher) absorption of a model molecule of nutrients (fluorescein isothiocyanate dextran 4kDa) from the surrounding environment compared to pristine scaffold. The developed platform could thus represent a valuable alternative in the treatment of many pathologies affecting soft tissues, by concurrently exploiting the therapeutic effects of drugs, with the 3D framework acting as a physical support for tissue regeneration and the cell-friendly environment represented by the hydrogel.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2958
Author(s):  
JunJie Yu ◽  
Su A Park ◽  
Wan Doo Kim ◽  
Taeho Ha ◽  
Yuan-Zhu Xin ◽  
...  

Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural–synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Hongqing Chen ◽  
Fei Fei ◽  
Xinda Li ◽  
Zhenguo Nie ◽  
Dezhi Zhou ◽  
...  

Abstract Both of the long-term fidelity and cell viability of three-dimensional (3D)-bioprinted constructs are essential to precise soft tissue repair. However, the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs, and bioinks containing excessive polymer are detrimental to cell viability. Here, we obtained a facile hydrogel by introducing 1% aldehyde hyaluronic acid (AHA) and 0.375% N-carboxymethyl chitosan (CMC), two polysaccharides with strong water absorption and water retention capacity, into classic gelatin (GEL, 5%)–alginate (ALG, 1%) ink. This GEL–ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG. We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37°C. The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3% calcium chloride for only 20 s. Flow cytometry results showed that the cell viability was 91.38 ± 1.55% on day 29, and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.06 ± 1.24%. This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.


2020 ◽  
Vol 26 (26) ◽  
pp. 3147-3160
Author(s):  
Saeedeh Ahmadipour ◽  
Jaleh Varshosaz ◽  
Batool Hashemibeni ◽  
Leila Safaeian ◽  
Maziar Manshaei

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, POSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young’s modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34±0.44 Mpa and 12.57 N, respectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G4.5H1P0.03PRP10 formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelrite/Hydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.


Sign in / Sign up

Export Citation Format

Share Document