scholarly journals Understanding of Feedback Field-Effect Transistor and Its Applications

2020 ◽  
Vol 10 (9) ◽  
pp. 3070 ◽  
Author(s):  
Changhoon Lee ◽  
Juho Sung ◽  
Changhwan Shin

Feedback field-effect transistors (FBFETs) are devices based on a positive feedback loop in which the electrons and holes in the channel region act on the energy states of the potential barrier and wall. Owing to the positive feedback phenomenon, FBFETs have an excellent subthreshold swing (~0 mV/decade at 300 K), a high on-/off current ratio (~1010), and a clear saturation region. The power consumption of both the turn-on state and turn-off state is significantly low until operation commences. In addition, the hysteresis caused by the carriers accumulated in the potential wall allows the FBFET to act as a memory device. Moreover, the power consumption of neuromorphic devices can be suppressed by ~100 times with the use of FBFETs. In this work, we analyze the device structure and operating principle of the FBFET and summarize its applications.

2020 ◽  
Vol 16 (4) ◽  
pp. 595-607 ◽  
Author(s):  
Mu Wen Chuan ◽  
Kien Liong Wong ◽  
Afiq Hamzah ◽  
Shahrizal Rusli ◽  
Nurul Ezaila Alias ◽  
...  

Catalysed by the success of mechanical exfoliated free-standing graphene, two dimensional (2D) semiconductor materials are successively an active area of research. Silicene is a monolayer of silicon (Si) atoms with a low-buckled honeycomb lattice possessing a Dirac cone and massless fermions in the band structure. Another advantage of silicene is its compatibility with the Silicon wafer fabrication technology. To effectively apply this 2D material in the semiconductor industry, it is important to carry out theoretical studies before proceeding to the next step. In this paper, an overview of silicene and silicene nanoribbons (SiNRs) is described. After that, the theoretical studies to engineer the bandgap of silicene are reviewed. Recent theoretical advancement on the applications of silicene for various field-effect transistor (FET) structures is also discussed. Theoretical studies of silicene have shown promising results for their application as FETs and the efforts to study the performance of bandgap-engineered silicene FET should continue to improve the device performance.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 301
Author(s):  
Young Jin Choi ◽  
Jihyun Kim ◽  
Min Je Kim ◽  
Hwa Sook Ryu ◽  
Han Young Woo ◽  
...  

Donor–acceptor-type organic semiconductor molecules are of great interest for potential organic field-effect transistor applications with ambipolar characteristics and non-volatile memory applications. Here, we synthesized an organic semiconductor, PDPPT-TT, and directly utilized it in both field-effect transistor and non-volatile memory applications. As-synthesized PDPPT-TT was simply spin-coated on a substrate for the device fabrications. The PDPPT-TT based field-effect transistor showed ambipolar electrical transfer characteristics. Furthermore, a gold nanoparticle-embedded dielectric layer was used as a charge trapping layer for the non-volatile memory device applications. The non-volatile memory device showed clear memory window formation as applied gate voltage increases, and electrical stability was evaluated by performing retention and cycling tests. In summary, we demonstrate that a donor–acceptor-type organic semiconductor molecule shows great potential for ambipolar field-effect transistors and non-volatile memory device applications as an important class of materials.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 901
Author(s):  
Gizem Acar ◽  
Muhammad Javaid Iqbal ◽  
Mujeeb Ullah Chaudhry

Organic light-emitting field-effect transistors (LEFETs) provide the possibility of simplifying the display pixilation design as they integrate the drive-transistor and the light emission in a single architecture. However, in p-type LEFETs, simultaneously achieving higher external quantum efficiency (EQE) at higher brightness, larger and stable emission area, and high switching speed are the limiting factors for to realise their applications. Herein, we present a p-type polymer heterostructure-based LEFET architecture with electron and hole injection interlayers to improve the charge injection into the light-emitting layer, which leads to better recombination. This device structure provides access to hole mobility of ~2.1 cm2 V−1 s−1 and EQE of 1.6% at a luminance of 2600 cd m−2. Most importantly, we observed a large area emission under the entire drain electrode, which was spatially stable (emission area is not dependent on the gate voltage and current density). These results show an important advancement in polymer-based LEFET technology toward realizing new digital display applications.


2021 ◽  
Author(s):  
Salomé Forel ◽  
Leandro Sacco ◽  
Alice Castan ◽  
Ileana Florea ◽  
Costel Sorin Cojocaru

We design a gas sensor by combining two SWCNT-FET devices in an inverter configuration enabling a better system miniaturization together with a reduction of power consumption and ease of data processing.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 187 ◽  
Author(s):  
Kamil Bargieł ◽  
Damian Bisewski ◽  
Janusz Zarębski

The paper deals with the problem of modelling and analyzing the dynamic properties of a Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed. A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation of the accuracy of the modified model was performed by comparison of the measured and calculated capacitance–voltage characteristics as well as the switching characteristics of JFETs.


MRS Advances ◽  
2017 ◽  
Vol 2 (23) ◽  
pp. 1249-1257 ◽  
Author(s):  
F. Michael Sawatzki ◽  
Alrun A. Hauke ◽  
Duy Hai Doan ◽  
Peter Formanek ◽  
Daniel Kasemann ◽  
...  

ABSTRACTTo benefit from the many advantages of organic semiconductors like flexibility, transparency, and small thickness, electronic devices should be entirely made from organic materials. This means, additionally to organic LEDs, organic solar cells, and organic sensors, we need organic transistors to amplify, process, and control signals and electrical power. The standard lateral organic field effect transistor (OFET) does not offer the necessary performance for many of these applications. One promising candidate for solving this problem is the vertical organic field effect transistor (VOFET). In addition to the altered structure of the electrodes, the VOFET has one additional part compared to the OFET – the source-insulator. However, the influence of the used material, the size, and geometry of this insulator on the behavior of the transistor has not yet been examined. We investigate key-parameters of the VOFET with different source insulator materials and geometries. We also present transmission electron microscopy (TEM) images of the edge area. Additionally, we investigate the charge transport in such devices using drift-diffusion simulations and the concept of a vertical organic light emitting transistor (VOLET). The VOLET is a VOFET with an embedded OLED. It allows the tracking of the local current density by measuring the light intensity distribution.We show that the insulator material and thickness only have a small influence on the performance, while there is a strong impact by the insulator geometry – mainly the overlap of the insulator into the channel. By tuning this overlap, on/off-ratios of 9x105 without contact doping are possible.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


2016 ◽  
Vol 4 (37) ◽  
pp. 8758-8764 ◽  
Author(s):  
Gaole Dai ◽  
Jingjing Chang ◽  
Linzhi Jing ◽  
Chunyan Chi

Two diacenopentalene dicarboximides were synthesized, and their devices made with solution-processing technique exhibited n-type field-effect transistor behavior with electron mobility of up to 0.06 cm2 V−1 s−1.


Sign in / Sign up

Export Citation Format

Share Document