scholarly journals A Review on the Erosion Mechanism in Cavitating Jets and Their Industrial Applications

2021 ◽  
Vol 11 (7) ◽  
pp. 3166
Author(s):  
Mouhammad El Hassan ◽  
Nikolay Bukharin ◽  
Wael Al-Kouz ◽  
Jing-Wei Zhang ◽  
Wei-Feng Li

Cavitating jets have been widely studied for over a century, but despite the extensive literature on this subject, the implementation of cavitating jets in many industries is still very limited due to technical challenges. The main purpose of the present paper is to provide recommendations on using the cavitating jets based on a comprehensive literature review on the erosion mechanism in these jets. Self-resonating jets are extensively discussed in the present paper due to their importance in amplifying the erosion effect of cavitating jets. The influence of different jet nozzle geometric parameters and the operating conditions of the cavitating jet flow on the erosion mechanism is also discussed. Finally, well drilling in addition to multiple other industrial applications of cavitating jets are examined.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Chengting Liu ◽  
Gang Liu ◽  
Zuoxiu Yan

The method of cleaning by self-excited pulsed cavitating jet was proposed according to cleaning characteristics and requirements of large storage equipment. This method has many advantages compared with other cleaning methods. In order to achieve the optimum cleaning effects, experimental research on working status of the nozzle at different flow rates was conducted and analysis was carried out from the following four aspects: cavitation morphology, pressure pulse frequency, velocity fluctuation amplitude, and erosion effect. The research results showed that flushing effects in the nozzle without cavitation were far below those with cavitation; when the flow rate increased to over 2.7 m3/h, cavitation began to appear in the chamber. When Q = 7.2 m3/h, the velocity fluctuation amplitude was about 17.25 m and pressure fluctuation occurred for 86 times (maximum) within 1 s. During the experiment on erosion effects, the flow rate had little influence on outside diameter of the erosion circle. The erosion rate increased with the increase of the flow rate, reached the peak value at Q = 7.2 m3/h, but slightly decreased subsequently.


Author(s):  
Tachung Yang ◽  
Wei-Ching Chaung

The accuracy of stiffness and damping coefficients of bearings is critical for the rotordynamic analysis of rotating machinery. However, the influence of bearings depends on the design, manufacturing, assembly, and operating conditions of the bearings. Uncertainties occur quite often in manufacturing and assembly, which causes the inaccuracy of bearing predictions. An accurate and reliable in-situ identification method for the bearing coefficients is valuable to both analyses and industrial applications. The identification method developed in this research used the receptance matrices of flexible shafts from FEM modeling and the unbalance forces of trial masses to derive the displacements and reaction forces at bearing locations. Eight bearing coefficients are identified through a Total Least Square (TLS) procedure, which can handle noise effectively. A special feature of this method is that it can identify bearing coefficients at a specific operating speed, which make it suitable for the measurement of speed-dependent bearings, like hydrodynamic bearings. Numerical validation of this method is presented. The configurations of unbalance mass arrangements are discussed.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6458
Author(s):  
Liaqat Hussain ◽  
Muhammad Mahabat Khan ◽  
Manzar Masud ◽  
Fawad Ahmed ◽  
Zabdur Rehman ◽  
...  

Jet impingement is considered to be an effective technique to enhance the heat transfer rate, and it finds many applications in the scientific and industrial horizons. The objective of this paper is to summarize heat transfer enhancement through different jet impingement methods and provide a platform for identifying the scope for future work. This study reviews various experimental and numerical studies of jet impingement methods for thermal-hydraulic improvement of heat transfer surfaces. The jet impingement methods considered in the present work include shapes of the target surface, the jet/nozzle–target surface distance, extended jet holes, nanofluids, and the use of phase change materials (PCMs). The present work also includes both single-jet and multiple-jet impingement studies for different industrial applications.


Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
IA Obiora-Okafo ◽  
OD Onukwuli ◽  
NC Eli-Chukwu

Dye usage for industrial applications has been on the increase and these activities generate large amounts of dye-constituted wastewater that should be treated before environmental discharge or reuse. Various studies have shown the application of natural organic polymer (NOP) coagulants in dye removal from industrial wastewater. In this research, the coagulation performances of Vigna unguiculata (VU) and Telfairia occidentalis (TO) for colour removal from crystal Ponceau 6R dye synthetic wastewater was studied. The proximate compositions, structure, and surface morphologies of the coagulants were investigated using standard methods, i.e. Fourier-Transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Colour removal was evaluated through the time-dependent decrease in particle concentration and thus growth of flocs. Effects of the process parameters, including pH, coagulant dosage, dye concentration (DC), settling time, and temperature were preliminarily tested and the best range experimentally determined. The optimal operating conditions established were pH 2, 800 mg∙L−1 coagulant dosage, 100 mg∙L−1 dye concentration, 300 min, and 303 K. The order of greatest removal was VUC > TOC with optimum efficiency of 93.5% and 90.7%, respectively. The values of K and α obtained for VUC and TOC were 8.09 x 10−4 L∙mg−1∙min−1, 1.7 and 9.89 x 10-4 L∙mg−1∙min−1, 1.6, respectively. Coagulation time, Tag, calculated and deduced from the particle distribution plot, showed a rapid coagulation process. Coagulation-adsorption kinetics indicated agreement with the pseudo-second-order model deducing that chemisorption is the rate-controlling step. It further indicates that particle adsorption on the polymer surfaces occurred mostly as a mono-molecular layer and according to the chemisorption mechanism. Cross-validation showed good prediction of the experimental data. The selected coagulants have the potential for application as efficient coagulants while also showing significant adsorption characteristics. The application of kinetics and modelling in separation processes involving particle transfer is especially required in wastewater treatment.


Author(s):  
Simone Marchetti ◽  
Duccio Nappini ◽  
Roberto De Prosperis ◽  
Paolo Di Sisto

Abstract This paper describes the design of the Free Power Turbine (FPT) of the LM9000, in particularly the design of its Passive Clearance Control (PCC) system. The LM9000 is the aero-derivative version of the GE90-115B jet engine. Its core engine has many common parts with the GE90; what differs is the booster (low pressure compressor) and the lower pressure turbine (LPT). The booster of the LM9000 is without fan because the engine is not used to provide thrust but torque only, subsequently it has a new flow path [5]. The LPT has instead been replaced by an intermediate pressure turbine (IPT) and by the FPT. The IPT drives the booster, while the FPT is a free low-pressure turbine designed for both power generation and mechanical drive industrial applications, including LNG production plants. Due to its different application, the LM9000 FPT flow path differs sensibly from the GE90 LPT, however as the GE90 it is provided of a clearance control system that cools the casing in order to reduce its radial deflection. It is not the first time that a clearance control system has been used in industrial applications; in GE aero-derivative power turbines is already present in the LM6000 and LMS100. Design constraints, system complexity, high environment variability because the PCC is located outside the GT, harsh environments and long periods of usage still make the design of this component challenging. The design of the PCC has been supported by extensive heat transfer and mechanical simulations. Each PCC component has been addressed with a dedicated life calculation and all the blade and seal clearances have been estimated for all the operating conditions of the engine. Simulations have been validated by an extensive test campaign performed on the first engine.


1968 ◽  
Vol 72 (690) ◽  
pp. 490-497
Author(s):  
J. B. Taylor

Propulsion systems selected for commercial transports must provide efficient and reliable performance over a broad range of conditions. These aeroplanes are used over both short and long route segments, on non-standard days, and at a range of altitudes to meet air-line schedule requirements. This paper covers some of the design parameters that were considered in the integration of the induction system, secondary air system, jet nozzle and the basic turbojet gas generator for the SST. During recent years some of the most important gains in propulsion efficiency have resulted from the development of inlets, engines and exhaust nozzles which are matched over a broad range of operating conditions. An efficient propulsion system for a supersonic transport depends upon very close matching of these components. This, of course, requires a better understanding of the capabilities and limitations of each of these major components. For the supersonic transport, 50% or more of the gross weight will be comprised of propulsion system and fuel and less than 10% will be payload.


Author(s):  
Liju Su ◽  
Ramesh K. Agarwal

Supersonic steam ejectors are widely used in many industrial applications, for example for refrigeration and desalination. The experimental evaluation of the flow field inside the ejector is relatively difficult and costly due to the occurrence of shock after the velocity of the steam reaches over the sonic level in the ejector. In this paper, numerical simulations are conducted to investigate the detailed flow field inside a supersonic steam (water vapor being the working fluid) ejector. The commercial computational fluid dynamics (CFD) flow solver ANSYS-Fluent and the mesh generation software ANSYS-ICEM are used to predict the steam performance during the mixing inside the ejector by employing two turbulence models, the k-ω SST and the k-ε realizable models. The computed results are validated against the experimental data. The effects of operating conditions on the efficiency of the ejector such as the primary fluid pressure and condenser pressure are studied to obtain a better understanding of the mixing process and entrainment. Velocity contours, pressure plots and shock region analyses provide a good understanding for optimization of the ejector performance, in particular how to increase the entrainment ratio.


Author(s):  
Saad A. Ahmed

Centrifugal compressors or blowers are widely used in many industrial applications. However, the operation of such systems is limited at low-mass flow rates by self-excited flow instabilities which could result in rotating stall or surge of the compressor. These instabilities will limit the flow range in which the compressor or the blower can operate, and will also lower their performance and efficiency. Experimental techniques were used to investigate a model of radial vaneless diffuser at stall and stall-free operating conditions. The speed of the impeller was kept constant, while the mass flow rate was reduced gradually to study the steady and unsteady operating conditions of the compressor. Additional experiments were made to investigate the effects of reducing the exit flow area on the inception of stall. The results indicate that the instability in the diffuser was successfully delayed to a lower flow coefficient when throttle rings were attached to either one or both of the diffuser walls (i.e., to reduce the diffuser exit flow area). The results also showed that an increase of the blockage ratio improves the stability of the system (i.e., the critical mass flow rate could be reduced to 50% of its value without blockage). The results indicate that the throttle rings could be an effective method to control stall in radial diffusers.


Sign in / Sign up

Export Citation Format

Share Document