scholarly journals On the Possibility to Use the Charge Imbalance in Patients Undergoing Radiotherapy: A New Online, In Vivo, Noninvasive Dose Monitoring System

2021 ◽  
Vol 11 (15) ◽  
pp. 7005
Author(s):  
G A Pablo Cirrone ◽  
Nino Amato ◽  
Roberto Catalano ◽  
Alessandro Di Domenico ◽  
Giacomo Cuttone ◽  
...  

This paper describes a new real-time, in vivo, noninvasive, biasless detector system acting as a beam monitoring and relative dose measurement system. The detector is based on the idea that when a beam current is injected into the body of a patient undergoing a charged particle therapy, the current itself can be collected using a conductive electrode in contact with the patient’s skin. This new approach was studied in vitro using an electrically isolated water tank irradiated with monoenergetic proton beams. The conductive electrode was immersed in water and positioned outside the irradiation field. The detection system performance was evaluated by comparing its response against a SEM (Secondary Emission Monitor) detector, used as a reference beam current monitor, and an Advanced Markus ionization chamber. Short-, mid- and long-term reproducibility, current monitoring capability, field size dependence, electrode position and environment temperature dependence, linearity with dose, and dose rate dependence were investigated. Few preliminary in vivo tests were also performed that demonstrated the possibility to apply the system in clinical practice. The potential of the proposed method is considerable, representing a simple and economical system for online, in vivo, and noninvasive monitoring of the beam current and relative released dose into the patient during treatment, without perturbing the irradiation field. The system presented in this work is protected with both a National Italian (N. 102017000087851) and an International N. WO 2019/025933 patent.

2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


Author(s):  
Pavani C H

Hyperlipidemia is the immediate results of the excessive fat intake in food. This results in the elevated levels of cholesterol and triglycerides in the blood. This leads to heart conditions like CAD, hypertension, congestive heart failure as risk factors which can be lethal. There are many drugs to treat and control the lipids levels in the body. These drugs are either designed to prevent LDL accumulation and VLDL synthesis. Some drugs also lower the elevated levels of saturated lipids in the body. But many drugs are known to cause side effects and adverse effects; therefore, alternatives to the drugs are the subjects for current investigations. Herbs and medicinal plants are used as treatment sources for many years. They have been used in the Indian medical systems like Ayurveda, Siddha etc. As the application of herbs in the treatment is growing, there is an urgent need for the establishment of Pharmacological reasoning and standardization of the activity of the medicinal plants. Chloris paraguaiensis Steud. is Poyaceae member that is called locally as Uppugaddi. Traditionally it is used to treat Rheumatism, Diabetes, fever and diarrhoea. The chemical constituents are known to have anti-oxidant properties and most of the anti-oxidants have anti-hyperlipidemic activity too. Since the plant has abundant flavonoid and phenol content, the current research focusses on the investigation of the anti-hyperlipidemic activity of the plant Chloris extracts. Extracts of Chloris at 200mg/kg showed a comparably similar anti hyperlipidemia activity to that of the standard drug. The extracts showed a dose based increase in the activity at 100 and 200mg/kg body weight.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Cancer is assemblage diseases involving abnormal cell growth amid the potential of spread to other parts of the body due to tobacco use are the cause of about of cancer deaths. Another 10% is due to obesity, poor diet & drinking alcohol. In 2012 about 14.1 million new cases of cancer occurred globally. In females, the most common type is breast cancer. Cisplatin also known as cytophosphane is a nitrogen mustard alkylating agent from the oxazophosphinans groups were used to treat cancers & autoimmune disorders. Based on the above reasons I will fix the aim Preparation characterization of Cisplatin- nano particles  &  its anticancer activity. Solid tumor volume examination report showed that the assessment of different day indication 15,20,25 & 30th variations of different groups of tumor volumes were decreased CPG Nanoparticles (100 mg/kg)+ DAL(15th day 4.97±0.24↓), (20th day 0.6±0.13↓), (25th day 1.35±0.30↓) & (30th day 1.89±0.13↓).


Author(s):  
Tamilarasi G P ◽  
Sabarees G

Oxidation is an essential reaction in the human body, which determines the expression of proteins in the body. This results in the altered expression like rapid growth resulting in cancers and other disorders. Many synthetic drugs are available in the market that is effective in limiting the free radical generation and the reaction of radicals with cells. Unfortunately, all those synthetic drugs were found to cause side effects and adverse effects in the body. But given the accuracy of the predictability of the results and administration, this research focuses on testing the anti-oxidant efficiency in rat models testing the biochemical parameters. Investigations have also been done on the anti-oxidant activity of Tectona, but every research was concentrated to prove the anti-oxidant activity only. extract had been tested for anti-oxidant activity by estimating various tissue parameters and it showed better activity. As predicted, there is a significant difference in the and results which can be explained are due to the physiological conditions that exist inside the body.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 315
Author(s):  
Zhenxing Wang ◽  
Zongcai Tu ◽  
Xing Xie ◽  
Hao Cui ◽  
Kin Weng Kong ◽  
...  

This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid–liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.


Sign in / Sign up

Export Citation Format

Share Document