scholarly journals Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications

2021 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Michaela Corina Crisan ◽  
Mocan Teodora ◽  
Mocan Lucian

Metallic nanoparticles are a new class of materials with applications in medicine, pharmaceutical and agriculture. Using biological, chemical and physical approaches, nanoparticles with amazing properties are obtained. Copper is one of the most-found elements and plays an important part in the normal functioning of organisms. Coper nanoparticles have superior antibacterial properties when comparing them to present day antibiotics. Moreover, apart from their antibacterial role, antifungal, antiviral and anticancer properties have been described. Although the mechanism of actions is not completely understood, copper nanoparticles can become a viable alternative in fighting multi-resistant bacteria strains. We hereby review the already existing data on copper nanoparticle synthesis, effects and mechanisms of action as well as toxicity.

2019 ◽  
Vol 11 (11) ◽  
pp. 1041-1048
Author(s):  
José Reinaldo Oliveira Silva ◽  
Anne Caroline Santos Ramos ◽  
Zenon Machado Lima ◽  
Bruno Dos Santos Lima ◽  
Adriano Antunes de Souza Araújo ◽  
...  

Multiresistant bacteria represent a global health problem, encouraging the development of effective antimicrobial treatments. In this context, metallic nanoparticles like silver nanoparticles (AgNPs) can serve as an alternative to the pathogenic bacterial growth control since AgNPs have minimal risk of promoting bacterial resistance. The chemical methods to synthesize AgNPs involves toxic agents however, an alternative way to obtain them would be employing plant extract due to its redox ability. In the current study, Spondias tuberosa hydroethanolic leaf extract (StHE) was used to assist silver nanoparticle synthesis (AgNP) and to evaluate the antimicrobial effect of both StHE and AgNP against antibiotic-resistant bacterias Pseudomonas aeruginosa and Staphylococcus aureus. The StHE phytochemical analysis displayed significant polyphenol and flavonoids contents, identified by HPLC. Synthesized AgNPs were spherical with an average size of 3.44–19.46 nm, characterized by UV-Vis and transmission electron microscopy (TEM). The AgNPs antimicrobial activity displayed higher capacity than the crude StHE, mainly against Gram-negative bacteria. Therefore, StHE is an effective source of reducing agents for the AgNPs synthesis, which exhibit high antibacterial potential against multidrug-resistant bacteria.


2019 ◽  
Vol 25 (24) ◽  
pp. 2677-2693 ◽  
Author(s):  
Xavier-Ravi Baskaran ◽  
Antony-Varuvel G. Vigila ◽  
Kilimas Rajan ◽  
Shouzhou Zhang ◽  
Wenbo Liao

Background: Nanopharmaceuticals have rapidly emerged as a means to cure several diseases. There are numerous reports describing the development and application of nanopharmaceuticals. Here, we discussed nanoparticle synthesis and the mechanisms to scavenge free radicals. We also discuss their major properties and list several commercially available nanomedicines. Results: Reactive oxygen and hydrogen species are formed during normal metabolism, and excessive reactive species can damage proteins, lipids, and DNA and cause disease. Plant- and microbe-based nanoparticles, which can protect tissues from free radical damage, have recently gained research momentum because they are inexpensive and safe. Conclusion: Synthetic and biocompatible nanoparticles exhibit antioxidant, antidiabetic, anti-inflammatory, and anticancer properties, which can be used to treat several diseases. Further studies are needed to investigate their sizes, dose-dependent activities, and mechanisms of action.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


2020 ◽  
Vol 26 ◽  
Author(s):  
Phuong H.L. Tran ◽  
Beom-Jin Lee ◽  
Thao T.D. Tran

: Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiates aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on continuing efforts of scientist on the way of developing an effective therapy for even patients with a low response to current cancer treatments.


2018 ◽  
Vol 18 (10) ◽  
pp. 957-966 ◽  
Author(s):  
Milene Aparecida Andrade ◽  
Mariana Aparecida Braga ◽  
Pedro Henrique Souza Cesar ◽  
Marcus Vinicius Cardoso Trento ◽  
Mariana Araújo Espósito ◽  
...  

Background: Essential oils are complex mixtures of low molecular weight compounds extracted from plants. Their main constituents are terpenes and phenylpropanoids, which are responsible for their biological and pharmaceutical properties, such as insecticidal, parasiticidal, antimicrobial, antioxidant, anti-inflammatory, analgesic, antinociceptive, anticarcinogenic, and antitumor properties. Cancer is a complex genetic disease considered as a serious public health problem worldwide, accounting for more than 8 million deaths annually. Objective: The activities of prevention and treatment of different types of cancer and the medicinal potential of essential oils are addressed in this review. Conclusion: Several studies have demonstrated anti-carcinogenic and antitumor activity for many essential oils obtained from various plant species. They may be used as a substitution to or in addition to conventional anti-cancer therapy. Although many studies report possible mechanisms of action for essential oils compounds, more studies are necessary in order to apply them safely and appropriately in cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3368
Author(s):  
Héloïse Côté ◽  
André Pichette ◽  
Alexis St-Gelais ◽  
Jean Legault

The use of growth-promoting antibiotics in livestock faces increasing scrutiny and opposition due to concerns about the increased occurrence of antibiotic-resistant bacteria. Alternative solutions are being sought, and plants of Lamiaceae may provide an alternative to synthetic antibiotics in animal nutrition. In this study, we extracted essential oil from Monarda didyma, a member of the Lamiaceae family. We examined the chemical composition of the essential oil and then evaluated the antibacterial, antioxidant, and anti-inflammatory activities of M. didyma essential oil and its main compounds in vitro. We then evaluated the effectiveness of M. didyma essential oil in regard to growth performance, feed efficiency, and mortality in both mice and broilers. Carvacrol (49.03%) was the dominant compound in the essential oil extracts. M. didyma essential oil demonstrated antibacterial properties against Escherichia coli (MIC = 87 µg·mL−1), Staphylococcus aureus (MIC = 47 µg·mL−1), and Clostridium perfringens (MIC = 35 µg·mL−1). Supplementing the diet of mice with essential oil at a concentration of 0.1% significantly increased body weight (+5.4%) and feed efficiency (+18.85%). In broilers, M. didyma essential oil significantly improved body weight gain (2.64%). Our results suggest that adding M. didyma essential oil to the diet of broilers offers a potential substitute for antibiotic growth promoters.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 401
Author(s):  
Ignacio A. Jessop ◽  
Yasmín P. Pérez ◽  
Andrea Jachura ◽  
Hipólito Nuñez ◽  
Cesar Saldías ◽  
...  

In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs’ effect and, to a lesser extent, to the cationic CPE.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Atanu Naskar ◽  
Sohee Lee ◽  
Kwang-sun Kim

Antibiotic therapy is the gold standard for bacterial infections treatment. However, the rapid increase in multidrug-resistant (MDR) bacterial infections and its recent use for secondary bacterial infections in many COVID-19 patients has considerably weakened its treatment efficacy. These shortcomings motivated researchers to develop new antibacterial materials, such as nanoparticle-based antibacterial platform with the ability to increase the chances of killing MDR strains and prevent their drug resistance. Herein, we report a new black phosphorus (BP)-based non-damaging near-infrared light-responsive platform conjugated with ZnO and Au nanoparticles as a synergistic antibacterial agent against Staphylococcus aureus species. First, BP nanosheets containing Au nanoparticles were assembled in situ with the ZnO nanoparticles prepared by a low-temperature solution synthesis method. Subsequently, the antibacterial activities of the resulting Au–ZnO–BP nanocomposite against the non-resistant, methicillin-resistant, and erythromycin-resistant S. aureus species were determined, after its photothermal efficacy was assessed. The synthesized nanocomposite exhibited excellent anti-S. aureus activity and good photothermal characteristics. The non-resistant S. aureus species did not produce drug-resistant bacteria after the treatment of multiple consecutive passages under the pressure of the proposed nanoantibiotic, but rapidly developed resistance to erythromycin. This work clearly demonstrates the excellent photothermal antibacterial properties of Au–ZnO–BP nanocomposite against the MDR S. aureus species.


Sign in / Sign up

Export Citation Format

Share Document