scholarly journals Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design

2019 ◽  
Vol 9 (22) ◽  
pp. 4856 ◽  
Author(s):  
Marwa El-Azazy ◽  
Sarra Dimassi ◽  
Ahmed El-Shafie ◽  
Ahmed Issa

Titan yellow (TY), a triazene azo dye, was removed from contaminated wastewater samples using a green adsorbent recycled from Aloe vera leaves (AV) waste. Two adsorbents were developed—air-dried Aloe vera (ADAV) and thermally treated Aloe vera (TTAV). Adsorption efficacy of both adsorbents was assessed in terms of percent removal (%R) of TY and adsorption capacity (qe). ADAV had a better performance compared to TTAV. Plackett–Burman design (PBD) was exploited to establish the experimental pattern of the study. Four variables were studied: pH, adsorbent dose (AD), dye concentration (DC), and stirring time (ST). Analysis of variance (ANOVA) at 95.0 confidence interval (CI), control, and quality charts helped establish regression model(s). Characterization of both adsorbents was performed using FT-IR/Raman spectroscopy together with TGA/dTGA and SEM/energy dispersive X-ray spectroscopy (EDX) analyses. Textural properties were determined using nitrogen adsorption isotherms at 77 K. Results showed that the surface areas of ADAV and TTAV300 were 3.940 and 7.076 m2/g, respectively. Raman analysis showed that the TTAV had clear D- and G-bands. Equilibrium studies revealed that data were well fitted to Freundlich isotherm with a maximum adsorption capacity of 55.25 mg/g using Langmuir equation, and the adsorption was physisorption. Adsorption followed a pseudo-second order that occurred in two steps—diffusion and then adsorption.

2019 ◽  
Vol 9 (22) ◽  
pp. 4855 ◽  
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Aya Ashraf ◽  
Ahmed A. Issa

Biosorptive removal of basic fuchsin (BF) from wastewater samples was achieved using the recycled agro-wastes of pistachio nut shells (PNS). Seven adsorbents were developed; raw shells (RPNS) and the thermally activated biomasses at six different temperatures (250–500 °C). Two measures were implemented to assess the performance of utilized adsorbents; %removal (%R) and adsorption capacity (qe). RPNS proved to be the best among the tested adsorbents. A smart approach, definitive-screening design (DSD) was operated to test the impact of independent variables on the adsorption capacity of RPNS. pH, adsorbent dose (AD), dye concentration (DC), and stirring time (ST), were the tested variables. Analysis of variance (ANOVA), control, and quality charts helped establishing regression model. Characterization was performed using Fourier- transform infrared (FT-IR)/Raman spectroscopies together with thermogravimetric analysis (TGA) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The surface area and other textural properties were determined using the Brunauer Emmett-Teller (BET) analysis. Removal of 99.71% of BF with an adsorption capacity of 118.2 mg/g could be achieved using a factorial blend of pH 12, 100 mg/50 mL of RPNS, and 250 ppm BF for 20 min. Equilibrium studies reveal that the adsorption is physisorption with adsorption energy of 7.45 kJ/mol as indicated by Dubinin-Radushkevich (DR) and Langmuir isotherms. Moreover, adsorption follows pseudo-second-order kinetics with respect to BF and is controlled by the adsorption rate.


Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Suriati Sufian ◽  
Muhammad Roil Bilad ◽  
Zaki Yamani Zakaria ◽  
...  

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5–6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


2020 ◽  
Vol 21 (1) ◽  
pp. 125-130
Author(s):  
Nyoman Sumawijaya ◽  
Asep Mulyono ◽  
Anna Fadliah Rusydi

ABSTRACTThe leather tanning industry in Sukaregang, Garut Regency, produces liquid waste containing Chromium and is discharged directly into the Ciwalen River without a waste treatment process. The content of Cr6+ as metal ions in the waste can also contaminating groundwater. The movement of Cr6+ will pass through the soil media before entering to the groundwater wells. The capability of the soil to adsorb the contaminant will reduce the impact on groundwater. The purpose of this study was to determine the ability of the soil in adsorbing and inhibiting the movement of Cr6+ into groundwater. The study was carried out at Sukaregang, Garut Regency and conducting adsorption experiments with a batch system. The analysis was carried out using the Langmuir and Freundlich isotherm model. The experimental results showed that Cr6+ adsorbed ranged from 38% to 57% of the initial concentration. The results from Langmuir Isotherm were: the distribution coefficient (Kads) was 0.45 L/mg and the maximum adsorption capacity (qm) was 2.44 mg/100g sorbent with R2 = 0.959 and Freundlich Isotherm was: qm was 2,86 mg/100g sorbent and Kads was 0,35 L/mg with R2 = 0,860. This large adsorption capacity is caused by soil texture and soil organic content. The soil in Sukaregang tanning industries has a high adsorption capacity towards Cr6+ contaminants.Keywords: adsorption, chromium, Cr6+, contaminant, volcanic soil, GarutABSTRAKIndustri penyamakan kulit di wilayah Sukaregang, Kabupaten Garut, menghasilkan limbah cair yang mengandung Kromium dan dibuang ke Sungai Ciwalen tanpa proses pengolahan limbah. Kandungan ion logam Cr6+ pada limbah dapat mencemari air tanah. Pergerakan ion logam Cr6+ akan melalui media tanah sebelum memasuki sumur-sumur penduduk. Beberapa jenis tanah mempunyai kemampuan untuk mengadsorpsi ion pencemar sehingga tidak semua limbah yang meresap ke dalam tanah mencemari air tanah. Tujuan dari penelitian ini adalah untuk mengetahui peranan tanah dalam menghambat pergerakan ion logam Cr6+ ke dalam air tanah. Penelitian dilaksanakan dengan pengambilan sampel tanah di daerah Sukaregang, Garut, dan melakukan percobaan adsorpsi dengan sistem batch. Sementara analisis dilakukan dengan menggunakan model isotherm Langmuir dan Freundlich. Hasil percobaan menunjukkan konsentrasi Cr6+ yang teradsorpsi berkisar 38 – 57 % dari konsentrasi awal. Kads sebesar 0,45 L/mg dan qm sebesar 2,44 mg/100g tanah dengan nilai R2 = 0,959 menggunakan isoterm Langmuir dan isoterm Freundlich memberikan nilai qm sebesar 2,86 mg/100 g sorbent dan Kads sebesar 0,35 L/mg dengan R2 = 0,860. Tingginya daya adsorpsi ini disebabkan oleh tekstur tanah dan kandungan bahan organik. Tanah di wilayah penelitian memiliki daya adsorpsi yang besar terhadap kontaminan Cr6+.Kata kunci: adsorpsi, kromium, Cr6+, kontaminan, tanah vulkanik, Garut


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dhiraj Dutta ◽  
Jyoti Prasad Borah ◽  
Amrit Puzari

Results of investigation on adsorption of Mn2+ from aqueous solution by manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM) are reported here. This is the first report on Mn-coated hollow polymer as a substitute for widely used materials like green sand or MN-coated sand. Hollow polymethylmethacrylate (HPM) was prepared by using a literature procedure. Manganese oxide (MnO) was coated on the surface of HPM (MHPM) by using the electroless plating technique. The HPM and MHPM were characterized by using optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Optical and scanning micrographs were used to monitor the surface properties of the coated layer which revealed the presence of MnO on the surface of HPM. TGA showed the presence of 4-5% of MnO in MHPM. Adsorption isotherm studies were carried out as a function of pH, initial ion concentration, and contact time, to determine the adsorption efficiency for removal of Mn2+ from contaminated water by the synthesized MHPM. The isotherm results showed that the maximum adsorption capacity of MnO-coated HPM to remove manganese contaminants from water is 8.373 mg/g. The obtained R 2 values of Langmuir isotherm and Freundlich isotherm models were 1 and 0.87, respectively. Therefore, R 2 magnitude confirmed that the Langmuir model is best suited for Mn2+ adsorption by a monolayer of MHPM adsorbent. The material developed shows higher adsorption capacity even at a higher concentration of solute ions, which is not usually observed with similar materials of this kind. Overall findings indicate that MHPM is a very potential lightweight adsorbent for removal of Mn2+ from the aqueous solution because of its low density and high surface area.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2021 ◽  
Vol 43 (4) ◽  
pp. 436-436
Author(s):  
Nida Shams Jalbani Nida Shams Jalbani ◽  
Amber R Solangi Amber R Solangi ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Ranjhan Junejo Ranjhan Junejo ◽  
Asif Ali Bhatti Asif Ali Bhatti

In current study, the diphenylaminomethylcalix[4]arene (3) was synthesized and immobilized onto silica surface to prepare a selective, regenerable and stable resin-4. The synthesized resin-4 has been characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and Brunauer-Emmett-Teller (BET) techniques. To check the adsorption capacity of resin-4, the batch and column adsorption methodology were applied and it has observed that the resin-4 was selectively removed Hg2+ ions under the optimized parameters. The maximum adsorption capacity was obtained at pH 9 using 25 mg/L of resin-4. Under the optimal conditions, different equilibrium, kinetic and thermodynamic models were applied to experimental data. The results show that adsorption mechanism is chemical in nature following Langmuir model with good correlation coefficient (R2=0.999) and having 712.098 (mmol/g) adsorption capacity. The energy of calculated from D-R model suggests the ion exchange nature of the adsorption phenomenon. Dynamic adsorption experiments were conducted using Thomas model. The maximum solid phase concentration (qo) was 7.5 and rate constant was found to be 0.176 with (R2=0.938) for Hg2+ ions. The kinetic study describes that the adsorption mechanism follows pseudo second order (R2=0.999). The thermodynamic parameters such as ∆H (0.032 KJ/mol) and ∆S (0.127 KJ/mol /K) and ∆G (-5.747,-6.306, -7.027 KJ/mol) shows that the adsorption of Hg2+ ion is endothermic and spontaneous. The reusability of resin-4 was also checked and it has observed that the after 15 cycle only 1.2 % adsorption reduces. Moreover, the resin-4 was applied on real wastewater samples obtained from local industrial zone of Karachi, Sindh-Pakistan.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2933
Author(s):  
Edgar Pineda Puglla ◽  
Diana Guaya ◽  
Cristhian Tituana ◽  
Francisco Osorio ◽  
María J. García-Ruiz

This study reports the adsorption capacity of lead Pb2+ and cadmium Cd2+ of biochar obtained from: peanut shell (BCM), “chonta” pulp (BCH) and corn cob (BZM) calcined at 500, 600 and 700 °C, respectively. The optimal adsorbent dose, pH, maximum adsorption capacity and adsorption kinetics were evaluated. The biochar with the highest Pb2+ and Cd2+ removal capacity is obtained from the peanut shell (BCM) calcined at 565 °C in 45 min. The optimal experimental conditions were: 14 g L−1 (dose of sorbent) and pH between 5 and 7. The sorption experimental data were best fitted to the Freundlich isotherm model. High removal rates were obtained: 95.96% for Pb2+ and 99.05. for Cd2+. The BCH and BZM revealed lower efficiency of Pb2+ and Cd2+ removal than BCM biochar. The results suggest that biochar may be useful for the removal of heavy metals (Pb2+ and Cd2+) from drinking water.


Sign in / Sign up

Export Citation Format

Share Document