scholarly journals Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 70 ◽  
Author(s):  
Ming-Yue Wu ◽  
Jia-Hong Lu

Autophagy is a conserved bulk degradation and recycling process that plays important roles in multiple biological functions, including inflammatory responses. As an important component of the innate immune system, macrophages are involved in defending cells from invading pathogens, clearing cellular debris, and regulating inflammatory responses. During the past two decades, accumulated evidence has revealed the intrinsic connection between autophagy and macrophage function. This review focuses on the role of autophagy, both as nonselective and selective forms, in the regulation of the inflammatory and phagocytotic functions of macrophages. Specifically, the roles of autophagy in pattern recognition, cytokine release, inflammasome activation, macrophage polarization, LC3-associated phagocytosis, and xenophagy are comprehensively reviewed. The roles of autophagy receptors in the macrophage function regulation are also summarized. Finally, the obstacles and remaining questions regarding the molecular regulation mechanisms, disease association, and therapeutic applications are discussed.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Ching Lin ◽  
Yi-Ru Shen ◽  
Chi-Chih Chang ◽  
Xiang-Yi Guo ◽  
Yun-Yun Young ◽  
...  

AbstractDifferent levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3′ ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3′-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


Gut ◽  
2019 ◽  
Vol 68 (8) ◽  
pp. 1477-1492 ◽  
Author(s):  
Lijun Liao ◽  
Kai Markus Schneider ◽  
Eric J C Galvez ◽  
Mick Frissen ◽  
Hanns-Ulrich Marschall ◽  
...  

ObjectiveThere is a striking association between human cholestatic liver disease (CLD) and inflammatory bowel disease. However, the functional implications for intestinal microbiota and inflammasome-mediated innate immune response in CLD remain elusive. Here we investigated the functional role of gut–liver crosstalk for CLD in the murine Mdr2 knockout (Mdr2−/−) model resembling human primary sclerosing cholangitis (PSC).DesignMale Mdr2−/−, Mdr2−/− crossed with hepatocyte-specific deletion of caspase-8 (Mdr2−/−/Casp8∆hepa) and wild-type (WT) control mice were housed for 8 or 52 weeks, respectively, to characterise the impact of Mdr2 deletion on liver and gut including bile acid and microbiota profiling. To block caspase activation, a pan-caspase inhibitor (IDN-7314) was administered. Finally, the functional role of Mdr2−/−-associated intestinal dysbiosis was studied by microbiota transfer experiments.ResultsMdr2−/− mice displayed an unfavourable intestinal microbiota signature and pronounced NLRP3 inflammasome activation within the gut–liver axis. Intestinal dysbiosis in Mdr2−/− mice prompted intestinal barrier dysfunction and increased bacterial translocation amplifying the hepatic NLRP3-mediated innate immune response. Transfer of Mdr2−/− microbiota into healthy WT control mice induced significant liver injury in recipient mice, highlighting the causal role of intestinal dysbiosis for disease progression. Strikingly, IDN-7314 dampened inflammasome activation, ameliorated liver injury, reversed serum bile acid profile and cholestasis-associated microbiota signature.ConclusionsMDR2-associated cholestasis triggers intestinal dysbiosis. In turn, translocation of endotoxin into the portal vein and subsequent NLRP3 inflammasome activation contribute to higher liver injury. This process does not essentially depend on caspase-8 in hepatocytes, but can be blocked by IDN-7314.


2011 ◽  
Vol 11 ◽  
pp. 2037-2050 ◽  
Author(s):  
Manoranjan Sahoo ◽  
Ivonne Ceballos-Olvera ◽  
Laura del Barrio ◽  
Fabio Re

The inflammasome is an important innate immune pathway that regulates at least two host responses protective against infections: (1) secretion of the proinflammatory cytokines IL-1βand IL-18 and (2) induction of pyroptosis, a form of cell death. Inflammasomes, of which different types have been identified, are multiprotein complexes containing pattern recognition receptors belonging to the Nod-like receptor family or the PYHIN family and the protease caspase-1. The molecular aspects involved in the activation of different inflammasomes by various pathogens are being rapidly elucidated, and their role during infections is being characterized. Production of IL-1βand IL-18 and induction of pyroptosis of the infected cell have been shown to be protective against many infectious agents. Here, we review the recent literature concerning inflammasome activation in the context of bacterial infections and identify important questions to be answered in the future.


Author(s):  
Rodolfo Perez-Alamino ◽  
Raquel Cuchacovich ◽  
Luis R. Espinoza ◽  
Constance P. Porretta ◽  
Arnold H. Zea

2019 ◽  
Vol 5 (5) ◽  
pp. eaav5562 ◽  
Author(s):  
Ruochan Chen ◽  
Ling Zeng ◽  
Shan Zhu ◽  
Jiao Liu ◽  
Herbert J. Zeh ◽  
...  

The ability of cytosolic lipopolysaccharide (LPS) to activate caspase-11–dependent nonclassical inflammasome is intricately controlled to avoid excessive inflammatory responses. However, very little is known about the regulatory role of various metabolic pathways in the control of caspase-11 activation. Here, we demonstrate that l-adrenaline can act on receptor ADRA2B to inhibit the activation of the caspase-11 inflammasome by cytosolic LPS or Escherichia coli infection in macrophages. l-adrenaline–induced cAMP production via the enzyme ADCY4 promotes protein kinase A (PKA) activation, which then blocks the caspase-11–mediated proteolytic maturation of interleukin-1β, gasdermin D (GSDMD) cleavage, and consequent DAMP release. Inhibition of PDE8A-mediated cAMP hydrolysis limits caspase-11 inflammasome activation and pyroptosis in macrophages. Consequently, pharmacological modulation of the ADRA2B-ADCY4-PDE8A-PKA axis, knockout of caspase-11 (Casp11−/−), or Gsdmd inactivation (GsdmdI105N/I105N) similarly protects against LPS-induced lethality in poly(I:C)-primed mice. Our results provide previously unidentified mechanistic insight into immune regulation by cAMP and represent a proof of concept that immunometabolism constitutes a potential therapeutic target in sepsis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaoyao Xia ◽  
Yikun Li ◽  
Xiaoyan Wu ◽  
Qingzhuo Zhang ◽  
Siyuan Chen ◽  
...  

Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.


2020 ◽  
Author(s):  
Xiao-Ting Zhang ◽  
Yong-Yao Yu ◽  
Hao-Yue Xu ◽  
Zhen-Yu Huang ◽  
Xia Liu ◽  
...  

AbstractThe skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent immunoglobulin (Ig) in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, here we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare. This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT-but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B-cells and specific IgT titers respectively within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection, and that because of the large surface of the skin, its SALT probably represents a prominent IgT inductive site in fish.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Catalán ◽  
Miguel Andrés Mansilla ◽  
Ashley Ferrier ◽  
Lilian Soto ◽  
Kristine Oleinika ◽  
...  

Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: –]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


Sign in / Sign up

Export Citation Format

Share Document