scholarly journals Improving the Stability and Curcumin Retention Rate of Curcumin-Loaded Filled Hydrogel Prepared Using 4αGTase-Treated Rice Starch

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Jihyun Kang ◽  
Ye-Hyun Kim ◽  
Soo-Jin Choi ◽  
Shin-Joung Rho ◽  
Yong-Ro Kim

In this study, 4-α-glucanotransferase (4αGTase)-treated rice starch (GS) was added after 1-h (1 GS) and 96-h (96 GS) treatments to the aqueous phase of a curcumin-loaded emulsion to produce filled hydrogels (1 GS-FH and 96 GS-FH, respectively). The relative protective effects of the FH system, native rice starch-based filled hydrogel (RS-FH), and emulsion without starch (EM), on curcumin were evaluated based on ultraviolet (UV) stability and simulated gastrointestinal studies. The UV stability and curcumin retention after in vitro digestion of the filled hydrogels (FH) samples were greater than those of the EM samples. RS-FH showed a 2.28-fold improvement in UV stability over EM due to the higher viscosity of RS. 1 GS-FH and 96 GS-FH increased curcumin retention by 2.31- and 2.60-fold, respectively, and the microstructure of 96 GS-FH, determined using confocal laser microscopy, remained stable even after the stomach phase. These effects were attributed to the molecular structure of GS, with decreased amylopectin size and amylose content resulting from the enzyme treatment. The encapsulation of lipids within the GS hydrogel particles served to protect and deliver the curcumin component, suggesting that GS-FH can be applied to gel-type food products and improve the chemical stability of curcumin.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5468
Author(s):  
Chenyu Tang ◽  
Bing Tan ◽  
Xiangjun Sun

Whey proteins and oligomeric proanthocyanidins have nutritional value and are widely used in combination as food supplements. However, the effect of the interactions between proanthocyanidins and whey proteins on their stability has not been studied in depth. In this work, we aimed to characterize the interactions between β-Lactoglobulin (β-LG) and α-lactalbumin (α-LA) and oligomeric proanthocyanidins, including A1, A2, B1, B2, B3, and C1, using multi-spectroscopic and molecular docking methods. Fluorescence spectroscopic data revealed that all of the oligomeric proanthocyanidins quenched the intrinsic fluorescence of β-LG or α-LA by binding-related fluorescence quenching. Among the six oligomeric proanthocyanidins, A1 showed the strongest affinity for β-LG (Ka = 2.951 (±0.447) × 104 L∙mol−1) and α-LA (Ka = 1.472 (±0.236) × 105 L∙mol−1) at 297 K. β-LG/α-LA and proanthocyanidins can spontaneously form complexes, which are mainly induced by hydrophobic interactions, hydrogen bonds, and van der Waals forces. Fourier-transform infrared spectroscopy (FTIR) and circular dichroism spectroscopy showed that the secondary structures of the proteins were rearranged after binding to oligomeric proanthocyanidins. During in vitro gastrointestinal digestion, the recovery rate of A1 and A2 increased with the addition of WPI by 11.90% and 38.43%, respectively. The addition of WPI (molar ratio of 1:1) increased the retention rate of proanthocyanidins A1, A2, B1, B2, B3, and C1 during storage at room temperature by 14.01%, 23.14%, 30.09%, 62.67%, 47.92%, and 60.56%, respectively. These results are helpful for the promotion of protein–proanthocyanidin complexes as functional food ingredients in the food industry.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-50
Author(s):  
Kevin S Jerez Bogota ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine the effects of the period of predigesting whole stillage (WS; slurry material that is dried into DDGS) with multi-enzyme and composition of the multi-enzyme on porcine in vitro digestibility of dry matter (IVDDM) of the WS. Four samples of whole stillage from 4 different sources were freeze-dried and divided into 13 subsamples to give 52 sub-samples. Thirteen treatments were applied to the 48 sub-samples within source. The treatments were undigested WS (control); or pre-digested with 1 of 3 multi-enzymes (MTE1, MTE2, and MTE3) at 55 °C for 6, 12, 18 or 24 h in 3 × 4 factorial arrangement. The MTE1 contained xylanase, β-glucanase, cellulase, mannanase, protease, and amylase; MTE2 contained xylanase, α-galactosidase, and cellulase; and MTE3 contained xylanase, cellulase, β-glucanase, and mannanase. The 52 subsamples were subjected to porcine in vitro digestion. The IVDDM of untreated WS was 73.3%. The IVDDM increased (P< 0.05) with an increase in the predigestion period. However, a rise in the predigestion period from 0 to 12 h resulted in greater (P< 0.05) response in mean IVDDM than an increment in the predigestion period from 12 to 24 h (11 vs. 0.83 percentage points). Predigestion period and multi-enzyme type interacted on IVDDM such that the improvement in IVDDM between 0 and 12 hours of predigestion differed (P< 0.05) among the 3 multi-enzyme types (13.3, 11.1, and 8.5 percentage points for MTE3, MTE2, and MTE1, respectively). The LS means by multi-enzyme treatment were modeled and resulted in unparallel curves (P< 0.05). The estimated maximum response of IVDDM for MTE1, MTE2 and MTE 3 were 82.4%, 84.7% and 87.1% at 15.8, 13 and 13.1 hours, respectively. In conclusion, the optimal time of predigestion of WS with multi-enzymes (with regard to improvement in its IVDDM) was approximately 14 h.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arashdeep Kaur ◽  
Sanjeev Kumar Soni ◽  
Shania Vij ◽  
Praveen Rishi

AbstractBiofilm formation on both biotic and abiotic surfaces accounts for a major factor in spread of antimicrobial resistance. Due to their ubiquitous nature, biofilms are of great concern for environment as well as human health. In the present study, an integrated process for the co-production of a cocktail of carbohydrases from a natural variant of Aspergillus niger was designed. The enzyme cocktail was found to have a noteworthy potential to eradicate/disperse the biofilms of selected pathogens. For application of enzymes as an antibiofilm agent, the enzyme productivities were enhanced by statistical modelling using response surface methodology (RSM). The antibiofilm potential of the enzyme cocktail was studied in terms of (i) in vitro cell dispersal assay (ii) release of reducing sugars from the biofilm polysaccharides (iii) the effect of enzyme treatment on biofilm cells and architecture by confocal laser scanning microscopy (CLSM). Potential of the enzyme cocktail to disrupt/disperse the biofilm of selected pathogens from biopolymer surfaces was also assessed by field emission scanning electron microscopy (FESEM) analysis. Further, their usage in conjunction with antibiotics was assessed and it was inferred from the results that the use of enzyme cocktail augmented the efficacy of the antibiotics. The study thus provides promising insights into the prospect of using multiple carbohydrases for management of heterogeneous biofilms formed in natural and clinical settings.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 101
Author(s):  
Cristiana Pereira ◽  
Regina Menezes ◽  
Vanda Lourenço ◽  
Teresa Serra ◽  
Carla Brites

Rice consumed as white cooked polished grain has been considered a high glycemic index (GI) food, particularly compared with other starchy foods. However, the GI levels of rice based food can vary among different rice types and food processing technologies. Rice GI variation can be affected by several factors, such as rice variety, the genetic background of rice as well as due to crop edaphoclimatic conditions. The main difference in rice starch composition that influences GI is the amylose content. Besides the chemical composition of rice, the gelatinization characteristics and food processing can also contribute to starch retrogradation, thus increasing the level of resistant starch with a great influence on GI. To understand the glycemic response of rice types differing in amylose and viscosity profiles, four rice samples were analyzed and compared with standard and resistant HI-MAIZE corn starches. An in vitro enzymatic starch hydrolysis procedure was applied to estimate GI. The results indicate substantial differences in the starch hydrolysis of the two corn starches. Starch hydrolysis tended to be more rapid and efficient for ‘Waxy’ and ‘Ceres’ (intermediate-amylose) rice types than for ‘Maçarico’ (high-amylose rice). In addition, the data show that the Maçarico variety has the lowest estimated GI and the highest retrogradation rate compared with ‘Waxy’, ‘Ceres’ and ‘Basmati’ type. The results obtained reinforce the importance of knowing amylose content and viscosity profiles for the prediction of rice glycemic responses.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


2002 ◽  
Vol 18 (6) ◽  
pp. 310-315 ◽  
Author(s):  
Darlene A Calhoun ◽  
Brooke E Richards ◽  
Jason A Gersting ◽  
Sandra E Sullivan ◽  
Robert D Christensen

Objective: To determine the stability of granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo) in human amniotic fluid and recombinant G-CSF (Neupogen) and Epo (Epogen) in simulated amniotic fluid to digestions at pH concentrations of 3.2, 4.5, and 5.8 to assess their bioavailability to the neonate. Design: A simulated amniotic fluid containing Neupogen and Epogen was subjected to in vitro conditions that mimicked preprandial and postprandial neonatal intestinal digestion. Human amniotic fluid was tested using identical digestion conditions as well as human amniotic fluid to which Epogen and Neupogen had been added. Main Outcome Measures: The percentages of G-CSF/Epo and Neupogen/Epogen remaining after 1 and 2 hours of simulated digestions were compared with those at time zero, and concentrations at 2 hours were compared with those at 1 hour and time zero. Results: In simulated amniotic fluid at pH 3.2, significant degradation of G-CSF was observed at 1 hour (p = 0.03). No differences were observed at 1 or 2 hours for either pH 4.5 (p = 0.30 and 0.11, respectively) or pH 5.8 (p = 0.20 and 0.49, respectively). Human amniotic fluid exhibited significant degradation pH 3.2 (p = 0.04) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at pH 5.8 at 1 hour (p = 0.34). When additional Neupogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p < 0.05) and pH 4.5 (p = 0.03) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.11). In simulated amniotic fluid at pH 3.2, significant degradation of Epo occurred at 1 hour (p < 0.05). There were no differences at 1 hour for pH 4.5 (p = 0.50) or pH 5.8 (p = 0.17). Human amniotic fluid exhibited significant degradation at pH 3.2 (p < 0.05) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.34). When additional Epogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p = 0.001) and pH 4.5 (p = 0.003); no difference was noted at 1 hour at pH 5.8 (p = 0.31). Conclusions: G-CSF/Epo in human amniotic fluid and Neupogen/Epogen in simulated amniotic fluid are preserved to varying degrees during simulated digestion conditions. The degree of degradation of both cytokines was time- and pH-dependent. Measurable quantities of G-CSF and Epo are biologically available when swallowed by the fetus or a preterm neonate.


2008 ◽  
Vol 8 (3) ◽  
pp. 254-258 ◽  
Author(s):  
Alija Uzunović ◽  
Edina Vranić

Anthocyanins are effective antioxidants but they have also been proposed to have other biological activities independent of their antioxidant capacities that produce health benefits. Examples range from inhibition of cancer cell growth in vitro, induction of insulin production in isolated pancreatic cells, reduction of starch digestion through inhibition of a-glucosidase activity, suppression of inflammatory responses as well as protection against age-related declines in cognitive behavior and neuronal dysfunction in the central nervous system. However, to achieve any biological effect in a specific tissue or organ, anthocyanins must be bioavailable; i.e. effectively absorbed from the gastrointestinal tract (GIT) into the circulation and delivered to the appropriate location within the body. In this study, we assess the stability of anthocyanins from commercial Black currant (Ribes nigrum L.) juice using an in vitro digestion procedure that mimics the physiochemical and biochemical conditions encountered in the gastrointestinal tract (GIT). The main objective of this work was the evaluation of stability of anthocyanins during in vitro digestion in gastric and intestinal fluid regarding whether appropriate enzyme (pepsin or pancreatin) was added or not. Anthocyanins present in commercial black currant juice remain stable during in vitro digestion in gastric fluid regardless whether pepsin was added into the medium or not. Also, they remain stable during in vitro digestion in simulated intestinal fluid without pancreatin. The stability studies of anthocyanins in the intestinal fluid containing pancreatin indicated reduced stability, which also mainly contribute to slight reduction of total anthocyanins content (1,83%-) in commercial black currant juice.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3322 ◽  
Author(s):  
Daofeng Qu ◽  
Chu Liu ◽  
Mengxue Jiang ◽  
Lifang Feng ◽  
Yuewen Chen ◽  
...  

Some studies have demonstrated that acrylamide (AA) was correlated with oxidative stress, resulting in physical damage. The jackfruit flake was an immature pulp that contained a high level of antioxidant activity. This study aimed to assess the defensive efficacy of jackfruit flake in AA-induced oxidative stress before and after simulated gastrointestinal digestion. Our results indicate that the total polyphenol content of Jackfruit flake digest (Digestive products of jackfruit flake after gastrointestinal, JFG) was diminished; however, JFG had raised the relative antioxidant capacity compared to Jackfruit flake extract (JFE). Additionally, the results of High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) implied that a proportion of compounds were degraded/converted into other unknown and/or undetected metabolites. Further, by high content analysis (HCA) techniques, JFG markedly reduced cytotoxicity and excessive production of reactive oxygen species (ROS) in cells, thereby alleviating mitochondrial disorders. In this study, it may be converted active compounds after digestion that had preferable protective effects against AA-induced oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document