scholarly journals Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5468
Author(s):  
Chenyu Tang ◽  
Bing Tan ◽  
Xiangjun Sun

Whey proteins and oligomeric proanthocyanidins have nutritional value and are widely used in combination as food supplements. However, the effect of the interactions between proanthocyanidins and whey proteins on their stability has not been studied in depth. In this work, we aimed to characterize the interactions between β-Lactoglobulin (β-LG) and α-lactalbumin (α-LA) and oligomeric proanthocyanidins, including A1, A2, B1, B2, B3, and C1, using multi-spectroscopic and molecular docking methods. Fluorescence spectroscopic data revealed that all of the oligomeric proanthocyanidins quenched the intrinsic fluorescence of β-LG or α-LA by binding-related fluorescence quenching. Among the six oligomeric proanthocyanidins, A1 showed the strongest affinity for β-LG (Ka = 2.951 (±0.447) × 104 L∙mol−1) and α-LA (Ka = 1.472 (±0.236) × 105 L∙mol−1) at 297 K. β-LG/α-LA and proanthocyanidins can spontaneously form complexes, which are mainly induced by hydrophobic interactions, hydrogen bonds, and van der Waals forces. Fourier-transform infrared spectroscopy (FTIR) and circular dichroism spectroscopy showed that the secondary structures of the proteins were rearranged after binding to oligomeric proanthocyanidins. During in vitro gastrointestinal digestion, the recovery rate of A1 and A2 increased with the addition of WPI by 11.90% and 38.43%, respectively. The addition of WPI (molar ratio of 1:1) increased the retention rate of proanthocyanidins A1, A2, B1, B2, B3, and C1 during storage at room temperature by 14.01%, 23.14%, 30.09%, 62.67%, 47.92%, and 60.56%, respectively. These results are helpful for the promotion of protein–proanthocyanidin complexes as functional food ingredients in the food industry.

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Jihyun Kang ◽  
Ye-Hyun Kim ◽  
Soo-Jin Choi ◽  
Shin-Joung Rho ◽  
Yong-Ro Kim

In this study, 4-α-glucanotransferase (4αGTase)-treated rice starch (GS) was added after 1-h (1 GS) and 96-h (96 GS) treatments to the aqueous phase of a curcumin-loaded emulsion to produce filled hydrogels (1 GS-FH and 96 GS-FH, respectively). The relative protective effects of the FH system, native rice starch-based filled hydrogel (RS-FH), and emulsion without starch (EM), on curcumin were evaluated based on ultraviolet (UV) stability and simulated gastrointestinal studies. The UV stability and curcumin retention after in vitro digestion of the filled hydrogels (FH) samples were greater than those of the EM samples. RS-FH showed a 2.28-fold improvement in UV stability over EM due to the higher viscosity of RS. 1 GS-FH and 96 GS-FH increased curcumin retention by 2.31- and 2.60-fold, respectively, and the microstructure of 96 GS-FH, determined using confocal laser microscopy, remained stable even after the stomach phase. These effects were attributed to the molecular structure of GS, with decreased amylopectin size and amylose content resulting from the enzyme treatment. The encapsulation of lipids within the GS hydrogel particles served to protect and deliver the curcumin component, suggesting that GS-FH can be applied to gel-type food products and improve the chemical stability of curcumin.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Aurélia Malapert ◽  
Valérie Tomao ◽  
Marielle Margier ◽  
Marion Nowicki ◽  
Béatrice Gleize ◽  
...  

Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2014 ◽  
Vol 7 ◽  
pp. 1-8 ◽  
Author(s):  
Ashok Kumar Shrestha

Recent advances have shown that differences in compositional, structural and physical properties of caseins and whey proteins affect their digestion and absorption behavior, hormonal response, satiety effect and other physiological effects. For example, the ingestion of whey protein cause fast, high and transient increase of amino acids ‘fast protein’, whereas casein induce slower, lower and prolonged increase of ‘slow protein’ in the gut. Knowledge of, and control over, the rate and nature of digestive breakdown of dairy proteins provides a potential basis for product/process innovation through identifying ingredients and formulations that provide desired nutrient delivery profiles. With this background, the aim of our current review paper is to understand the digestion behavior of various protein-rich milk powders and their potential use in formulation of dairy foods for controlled release of amino acids and energy. Currently available in vitro protein digestibility methods to measure or predict the dairy protein digestibility were also investigated. The author has also presented the preliminary results of ongoing study on in vitro digestion of various commercial proteins powders.DOI: http://dx.doi.org/10.3126/jfstn.v7i0.10560 J. Food Sci. Technol. Nepal, Vol. 7 (1-8), 2012


2020 ◽  
Vol 8 (5) ◽  
pp. 654
Author(s):  
Ester Betoret ◽  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Marco Dalla Rosa

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.


2005 ◽  
Vol 93 (S1) ◽  
pp. S91-S98 ◽  
Author(s):  
Jan Van Loo ◽  
Yvonne Clune ◽  
Mary Bennett ◽  
John Kevin Collins

Experimental evidence on the anticancer properties of dietary prebiotics such as chicory inulin and oligofructose and dietary probiotics has accumulated in recent years. Various experimental models ranging from chemoprevention studies, tumour implantation models to genetically modified mice models, etc. have systematically shown the protective effects of these food ingredients. In some studies it appeared that synbiotics (combination of pre- and probiotics) exerted synergistic activity against processes of carcinogenesis. The logical next step in research was to find out if these observations also would be valid for human volunteers. This was the principal goal of the EU-sponsored SYNCAN project (QLK1-1999-346) which involved the integration of an in vitro study to select the most suitable synbiotic preparation, the application of this synbiotic in an in vivo rat model of chemically induced colon cancer, and, as the heart of the project, the investigation of the synbiotic effects in a human intervention study. The in vitro tests consisted of fermentation studies where the interaction of pre- and probiotics was studied. Cell-free supernatants were generated from various synbiotic combinations fermented by faecal slurry, which were then used to optimise a series of bioassays. In the rat study the anticarcinogenic effect of prebiotics and synbiotics but not of probiotics was demonstrated. Using tissue samples generated in this model, attempts were made to gain a better insight into the mechanisms underlying cancer development. The human intervention study consisted of two groups of volunteers. One group was composed of people at high risk (polypectomised subjects) for colon cancer and the other of volunteers (colon cancer subjects) who had previously undergone ‘curative resection‘ for colon cancer but were not currently receiving treatment. The present paper describes the experimental design of the SYNCAN study, and demonstrates a functional effect of the synbiotic preparation (probiotic survival during gastrointestinal transit and modification of the intestinal flora). Detailed experimental outcome of the human intervention study will be reported elsewhere.


2016 ◽  
Vol 68 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Shenli Wang ◽  
Miryam Amigo-Benavent ◽  
Raquel Mateos ◽  
Laura Bravo ◽  
Beatriz Sarriá

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Katharina Pälchen ◽  
Ben Van den Wouwer ◽  
Dorine Duijsens ◽  
Marc E. Hendrickx ◽  
Ann Van Loey ◽  
...  

Processing results in the transformation of pulses’ structural architecture. Consequently, digestion is anticipated to emerge from the combined effect of intrinsic (matrix-dependent) and extrinsic (processed-induced) factors. In this work, we aimed to investigate the interrelated effect of intrinsic and extrinsic factors on pulses’ structural architecture and resulting digestive consequences. Three commercially relevant pulses (chickpea, pea, black bean) were selected based on reported differences in macronutrient and cell wall composition. Starch and protein digestion kinetics of hydrothermally processed whole pulses were assessed along with microstructural and physicochemical characteristics and compared to the digestion behavior of individual cotyledon cells isolated thereof. Despite different rates of hardness decay upon hydrothermal processing, the pulses reached similar residual hardness values (40 N). Aligning the pulses at the level of this macrostructural property translated into similar microstructural characteristics after mechanical disintegration (isolated cotyledon cells) with comparable yields of cotyledon cells for all pulses (41–62%). We observed that processing to equivalent microstructural properties resulted in similar starch and protein digestion kinetics, regardless of the pulse type and (prolonged) processing times. This demonstrated the capacity of (residual) hardness as a food structuring parameter in pulses. Furthermore, we illustrated that the digestive behavior of isolated cotyledon cells was representative of the digestion behavior of corresponding whole pulses, opening up perspectives for the incorporation of complete hydrothermally processed pulses as food ingredients.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1822
Author(s):  
Joe-Hui Ong ◽  
Jiun-An Koh ◽  
Hui Cao ◽  
Sheri-Ann Tan ◽  
Fazilah Abd Manan ◽  
...  

Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6–14 residues; 633–1518 Da). The peptides consisted of 33–86% hydrophobic and 10–67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (−4.7 to −4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.


Sign in / Sign up

Export Citation Format

Share Document