scholarly journals Antibacterial Properties of Coaxial Spinning Membrane of Methyl ferulate/zein and Its Preservation Effect on Sea Bass

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2385
Author(s):  
Tingting Li ◽  
Yue Shen ◽  
Haitao Chen ◽  
Yuchen Xu ◽  
Dangfeng Wang ◽  
...  

Methyl ferulate is a new natural antibacterial agent with strong activity and low toxicity. It has good application prospects in food preservation. In this paper, the antibacterial activity of methyl ferulate against Shigella putrefaciens was verified, and it was embedded into zein by electrospinning technology to prepare fiber membranes. The addition of methyl ferulate could improve the tensile strength of zein fiber membrane and decrease the crystallinity of the membrane, which was mainly a physical combination. The fiber membrane improved the thermal stability of methyl ferulate. The water contact angle (WCA) decreased to 54.85°. The results showed that methyl ferulate in fiber membrane could be released slowly, gradually exerting its antibacterial activity. After coating perch with methyl ferulate/zein fiber membrane, the growth of microorganisms in perch meat was inhibited, and the pH value and total volatile basic nitrogen (TVB-N)content were effectively increased. In a word, methyl ferulate had antibacterial activity in the fiber film, which was able to achieve a sustained release effect in the process of fish packaging, prolonging its antibacterial activity, and having preservation effect on sea bass; thus, it could be used in food packaging.

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Nadya Fitriani Pitaloka ◽  
◽  
Ardilla Sriwijayanti ◽  
Santi Anisa ◽  
Irne Dyah Ayu Wijayanti ◽  
...  

Food packaging materials derived from fossil fuels are single-use products that harm the health of living things when disposed of by releasing toxic byproducts. Many communities are starting to be more environmentally friendly by using biopolymers. However, some biopolymers do not have antibacterial properties, thus shortening the food’s shelf life and not applicable in food packaging. Therefore, the purpose of this work is to develop a biodegradable and antimicrobial food packaging from sugarcane bagasse and clay that degrades over time without compromising the food’s shelf life. Cellulose acetate butyrate (cab) was prepared in an amimcl ionic liquid system from sugarcane bagasse. Then the cab was plasticized using peg, resulting a film. Besides, montmorillonite (mmt) clay was modified with aryl ammonium cations using a cation exchange technique to form bmmt. The nanocomposite film was prepared by mixing the plasticized cab and bmmt, then heated at 50c to evaporate the solution. The nanocomposite film was obtained as a prototype of food packaging. Several tests were conducted including mechanical properties, water vapor permeability (wvp), antimicrobial and toxicity test. Based on research by saha et.al, 2008, the nanocomposite film with the cag, peg and bmmt 100:20:3 composition gave the best mechanical properties because of the agglomeration of bmmt. Also, the nanocomposite film had promising wvp properties as a plastic because the clay layers reduced the water vapor diffusion across the polymer matrix. The toxicity test showed that this nanocomposite film was compatible in human blood. Lastly, this nanocomposite film has antibacterial activity against b. Subtilis and p. Cepacia because of the bmmt presence. In conclusion, the nanocomposite film from sugarcane bagasse and clay containing cag, peg and bmmt 100:20:3 is a promising material for a biodegradable and antimicrobial food packaging, because it has sufficient mechanical properties, antibacterial activity, low wvp and is non-toxic.


2019 ◽  
Vol 814 ◽  
pp. 349-353
Author(s):  
Tanawan Wanitwisutchai ◽  
Naruporn Monmaturapoj ◽  
Ratchapin Srisatjaluk ◽  
Kittitat Subannajui ◽  
Niwat Anuwongnukroh ◽  
...  

The objective of this study was to evaluate the antibacterial properties and pH changes of bioactive glasses and zinc oxide nanowire in different concentrations. Bioactive glasses (45S5 and 45S5F) were prepared in three concentrations of 10, 20, and 50 mg/ml and zinc oxide nanowire was prepared in 1 and 5 mg/ml concentrations. The materials were exposed to 500 ml brain heart infusion broth (BHI) with 1.5 x 107 of S.mutans and S.sanguinis separately. Antibacterial properties were tested indirectly by collecting 100 ml of each sample and transferred into a 96 well-plate. The optical density (OD) was evaluated using spectrophotometry at 630 nm at 24h and 48h. The pH changes were recorded. The data were statistically analyzed by Kruskal-Wallis tests. The result showed that the pH changes were significantly different in the Bioactive glass samples, while zinc oxide nanowire showed stable pH. Antibacterial activity against S.mutans was significant lower for 45S5 at 50 mg/ml, 45S5F and zinc oxide nanowire in all concentrations at 24 h. While in 48 h, 45S5, 45S5F and zinc oxide nanowire showed significant antibacterial activity in all concentration except 45S5F at 10 mg/ml. Antibacterial activity against S.sanguinis was significant for 45S5 and 45S5F at 20 and 50 mg/ml and zinc oxide nanowire in all concentration at 48h. It can be concluded that Bioactive glasses (45S5 and 45S5F) exhibited antibacterial properties and pH changes depending on its concentration, while zinc oxide nanowire exhibited antibacterial properties at low concentrations with a constant pH value.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 870
Author(s):  
Ângelo Luís ◽  
Ana Ramos ◽  
Fernanda Domingues

More than 150 million tons of synthetic plastics are produced worldwide from petrochemical-based materials, many of these plastics being used to produce single-use consumer products like food packaging. The main goal of this work was to research the production and characterization of pullulan–apple fiber biocomposite films as a new food packaging material. The optical, mechanical, and barrier properties of the developed biocomposite films were evaluated. Furthermore, the antioxidant and antibacterial activities of the biocomposite films were additionally studied. The results show that the Tensile Index and Elastic Modulus of the pullulan–apple fiber films were significantly higher (p-value < 0.05) when compared to the pullulan films. Regarding the water vapor permeability, no significant differences (p-value < 0.05) were observed in water vapor transmission rate (WVTR) when the apple fiber was incorporated into the biocomposite films. A significant increase (p-value < 0.05) of water contact angle in both sides of the films was observed when the apple fiber was incorporated into pullulan, indicating an increase in the hydrophobicity of the developed biocomposite films. It is worth noting the hydrophobicity of the (rough) upper side of the pullulan–apple fiber films, which present a water contact angle of 109.75°. It was possible to verify the microbial growth inhibition around the pullulan–apple fiber films for all the tested bacteria.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 270 ◽  
Author(s):  
Ana Salević ◽  
Cristina Prieto ◽  
Luis Cabedo ◽  
Viktor Nedović ◽  
Jose Lagaron

In this study, novel active films made of poly(ε-caprolactone) (PCL) containing a solid dispersion of sage extract (SE) were developed by means of the electrospinning technique and subsequent annealing treatment. Initially, the antioxidant and antimicrobial potential of SE was confirmed. Thereafter, the effect of SE incorporation at different loading contents (5%, 10%, and 20%) on the physicochemical and functional properties of the films was evaluated. The films were characterized in terms of morphology, transparency, water contact angle, thermal stability, tensile properties, water vapor, and aroma barrier performances, as well as antioxidant and antimicrobial activities. Thin, hydrophobic films with good contact transparency were produced by annealing of the ultrathin electrospun fibers. Interestingly, the effect of SE addition on tensile properties and thermal stability of the films was negligible. In general, the water vapor and aroma permeability of the PCL-based films increased by adding SE to the polymer. Nevertheless, a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical scavenging ability, and a strong activity against foodborne pathogens Staphylococcus aureus and Escherichia coli were achieved by SE incorporation into PCL matrix. Overall, the obtained results suggest great potential of the here-developed PCL-based films containing SE in active food packaging applications with the role of preventing oxidation processes and microbial growth.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 525 ◽  
Author(s):  
Shiyi Feng ◽  
Feng Zhang ◽  
Saeed Ahmed ◽  
Yaowen Liu

In this study, PLA/TiO2 composites materials were prepared via electrospinning and solution casting processes. By testing the mechanical properties, water contact angle, water vapor permeability, and solubility of the composite nanofibers and films, the comprehensive performances of the two types of nanocomposites were analyzed. The results show that maximum tensile strengths of 2.71 ± 0.11 MPa and 14.49 ± 0.13 MPa were achieved for the nanofibers and films at a TiO2 content of 0.75 wt.%. Moreover, the addition of TiO2 significantly cut down the water vapor transmittance rate of the nanofibers and films while significantly improving the water solubility. Further, the antibacterial activity increased under UV-A irradiation for a TiO2 nanoparticle content of 0.75 wt.%, and the nanofiber and films exhibited inhibition zones of 4.86 ± 0.50 and 3.69 ± 0.40 mm for E. coli, and 5.98 ± 0.77 and 4.63 ± 0.45 mm for S. aureus, respectively. Overall, the performance of the nanofiber was better than that of the film. Nevertheless, both the nanocomposite membranes satisfied the requirements of food packaging materials.


2021 ◽  
Vol 11 (14) ◽  
pp. 6307
Author(s):  
Swarup Roy ◽  
Jong-Whan Rhim

Gelatin-based multifunctional composite films were prepared by reinforcing various amounts of copper sulfide nanoparticles (CuSNP, 0.0, 0.5, 1.0, and 2.0 wt %), and the effect of CuSNP on the film was evaluated by analyzing its physical and antibacterial properties. CuSNP makes a compatible film with gelatin. The inclusion of CuSNP significantly enhanced the UV blocking, mechanical strength, and water vapor barrier properties of the gelatin film. The inclusion of CuSNP of 1.0 wt % or less did not affect the transparency of the gelatin film. When 2.0 wt % of CuSNP was mixed, the hydrophilicity of the gelatin film did not change noticeably, but its thermal properties slightly increased. Moreover, the gelatin/CuSNP composite film presented effective antibacterial activity against E. coli and some activity against L. monocytogenes. Gelatin/CuSNP composite films with better functional and physical properties can be used for food packaging or biomedical applications.


2019 ◽  
Vol 35 (2) ◽  
pp. 117-134 ◽  
Author(s):  
Hajer Rokbani ◽  
France Daigle ◽  
Abdellah Ajji

Concerns in food safety and the need for high-quality foods have increased the demand for extending the shelf life of packaged foods. Subsequently, promoting and investigating the development of antibacterial materials for food packaging has become inevitable. Zinc oxide nanoparticles have attracted attention lately owing to their multifunctional properties, especially antibacterial activity. For this study, antibacterial low-density polyethylene films were prepared by coating zinc oxide nanoparticles onto their surface. The low-density polyethylene film antibacterial activity was evaluated toward Gram-positive and Gram-negative bacteria. The scanning electron microscopy images showed that using anhydride-modified low-density polyethylene (LDPE-g-AM) resin permitted improved zinc oxide nanoparticle distribution on the low-density polyethylene film surface, reduced the agglomerate sizes, and reinforced the zinc oxide nanoparticle bonding to the low-density polyethylene film surface. We found that the coated low-density polyethylene films exhibited high antibacterial activity against both strains. The antibacterial tests also proved that the coated films retained their antibacterial efficiency toward Escherichia coli, even after eight months, with a reduction rate higher than 99.9%, whereas for Staphylococcus aureus the antibacterial properties for the linear low-density polyethylene (LLDPE) films decreased at eight months and improved for the LDPE-g-AM films. When the zinc oxide coated films were laminated with neat low-density polyethylene, only the LDPE-g-AM was still active against E. coli provided that the lamination thickness does not go beyond 8 µm. This research demonstrated that the coated low-density polyethylene films have excellent attributes when used as an active coating in the food packaging industry.


2019 ◽  
Vol 7 (8) ◽  
pp. 267 ◽  
Author(s):  
Luís ◽  
Domingues ◽  
Ramos

Hydrophobic zein-based functional films incorporating licorice essential oil were successfully developed as new alternative materials for food packaging. The lotus-leaf negative template was obtained using polydimethylsiloxane (PDMS). The complex surface patterns of the lotus leaves were transferred onto the surface of the zein-based films with high fidelity (positive replica), which validates the proposed proof-of-concept. The films were prepared by casting method and fully characterized by Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The grammage, thickness, contact angle, mechanical, optical and barrier properties of the films were measured, together with the evaluation of their biodegradability, antioxidant and antibacterial activities against common foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The zein-based films with the incorporation of licorice essential oil presented the typical rugosities of the lotus leaf making the surfaces very hydrophobic (water contact angle of 112.50°). In addition to having antioxidant and antibacterial properties, the films also shown to be biodegradable, making them a strong alternative to the traditional plastics used in food packaging.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 930 ◽  
Author(s):  
Siying Tang ◽  
Zhe Wang ◽  
Penghui Li ◽  
Wan Li ◽  
Chengyong Li ◽  
...  

A degradable and antibacterial sodium alginate film containing functional Au-TiO2 nanocomposites for food packaging was successfully developed. The Au-TiO2 nanocomposites are synthesized hydrothermally and mixed with the alginate solution to form the film by a casting method. The Au-TiO2 nanocomposites enable the film with excellent visible light absorption and transfer ability with the light absorption rang covering UV–visible wavelength (300–800 nm) and induce the increase of the film water contact angle from 40° to 74°, which contributes to the film shape stability. Furthermore, compared to the TiO2 nanoparticle-incorporated film, the antibacterial ability of Au-TiO2/sodium alginate composite film is improved approximately by 60% and 50% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively, in light conditions. The antibacterial property of the film arises from the increased production of reactive oxygen species (ROS) induced by the surface plasmonic resonance of Au nanoparticles. The degradable and antibacterial properties render the composite film of great application potential in food packaging industry.


2020 ◽  
Vol 4 (2) ◽  
pp. 18 ◽  
Author(s):  
Josemar Gonçalves de Oliveira Filho ◽  
Isabella Pelosi Borges de Deus ◽  
Anna Carolina Fernandes Valadares ◽  
Cassia Cristina Fernandes ◽  
Elisângela Barbosa Borges Estevam ◽  
...  

The development of active packaging for food preservation is attracting increased attention due to serious environmental problems caused by synthetic and conventional materials. In the present study, the physical, chemical, optical, microstructural, and antibacterial properties of chitosan films with Citrus limonia essential oil (CEO) were investigated. The incorporation >0.75% of CEO increased the thickness of the films. The incorporation >0.25% of CEO reduced the moisture content and the water vapor permeability of the chitosan films. The biodegradability of the films over ten days ranged from 55.46–62.65% and was not affected by the addition of CEO. All films showed good UV light barrier properties, and the incorporation of the CEO caused a decrease in the visible light transmission rate values. The addition of CEO changed the color of the bioactive films significantly, remain darker and yellowish. The bioactive films showed antibacterial activity against Staphylococcus aureus, but not against Escherichia coli. The films showed a heterogeneous microstructure with oil droplets retained in the continuous polysaccharide network. The results showed that chitosan films with CEO are promising as an active packaging material for food preservation.


Sign in / Sign up

Export Citation Format

Share Document