scholarly journals Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3075
Author(s):  
Vittoria Cella ◽  
Viviana M. Bimonte ◽  
Claudia Sabato ◽  
Antonio Paoli ◽  
Carlo Baldari ◽  
...  

The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.

2019 ◽  
Vol 10 (1) ◽  
pp. 389-408 ◽  
Author(s):  
Yanbei Wu ◽  
Jiawei Wan ◽  
Uyory Choe ◽  
Quynhchi Pham ◽  
Norberta W. Schoene ◽  
...  

Understanding the relationship between food and the gut microbiota, their interactions, and how each modulates the other is critical for successful promotion of human health. This review seeks to summarize ( a) the current knowledge on the effects of food and food components on gut microbiota and ( b) the association between gut microbiota, consumption of food, and food bioactive components and the resulting beneficial health outcomes. Our goal is to provide state-of-the-art information on food and gut microbiota interactions and to stimulate discussions and research approaches that will move the field forward.


Author(s):  
Karla A Bascuñán ◽  
Magdalena Araya ◽  
Leda Roncoroni ◽  
Luisa Doneda ◽  
Luca Elli

ABSTRACT The gut microbiota plays a relevant role in determining an individual's health status, and the diet is a major factor in modulating the composition and function of gut microbiota. Gluten constitutes an essential dietary component in Western societies and is the environmental trigger of celiac disease. The presence/absence of gluten in the diet can change the diversity and proportions of the microbial communities constituting the gut microbiota. There is an intimate relation between gluten metabolism and celiac disease pathophysiology and gut microbiota; their interrelation defines intestinal health and homeostasis. Environmental factors modify the intestinal microbiota and, in turn, its changes modulate the mucosal and immune responses. Current evidence from studies of young and adult patients with celiac disease increasingly supports that dysbiosis (i.e., compositional and functional alterations of the gut microbiome) is present in celiac disease, but to what extent this is a cause or consequence of the disease and whether the different intestinal diseases (celiac disease, ulcerative colitis, Crohn disease) have specific change patterns is not yet clear. The use of bacterial-origin enzymes that help completion of gluten digestion is of interest because of the potential application as coadjuvant in the current treatment of celiac disease. In this narrative review, we address the current knowledge on the complex interaction between gluten digestion and metabolism, celiac disease, and the intestinal microbiota.


2017 ◽  
Vol 27 (7) ◽  
pp. 1560-1567 ◽  
Author(s):  
Christelle Schofield ◽  
Robert U. Newton ◽  
Daniel A. Galvão ◽  
Paul A. Cohen ◽  
Carolyn J. Peddle-McIntyre

ObjectivePhysical activity has become increasingly important in supportive cancer care. However, physical activity and exercise guidelines for ovarian cancer survivors remain generic. The aim of this narrative review is to summarize existing data regarding the physiological characteristics (treatment-related adverse effects, concurrent comorbidities, body weight and composition, physical fitness and function, and physical activity behavior) of ovarian cancer survivors to further understanding of their cancer-specific physical activity and exercise needs. We also highlight gaps in the current knowledge base.MethodsWe undertook a narrative review of current literature on the physiological status of ovarian cancer survivors. We defined physiological status as treatment-related adverse effects, concurrent comorbidities, body weight and composition, physical fitness and function, and physical activity behavior.ResultsIn addition to disease- and treatment-related symptoms and adverse effects, the majority of ovarian cancer survivors have comorbidities, which may adversely affect treatment effectiveness and safety, as well as survival. Despite high overweight and obesity rates, a large percentage of women are malnourished at diagnosis, with potentially compromised muscle mass and muscle density. Low muscle density at diagnosis and loss of muscle mass during treatment may be associated with worse survival outcomes. A small number of studies have observed impaired physical function and cardiorespiratory fitness in ovarian cancer survivors. The majority of ovarian cancer survivors are insufficiently active or sedentary.ConclusionsOur review suggests that ovarian cancer survivors could benefit from physical activity and exercise oncology interventions aimed at addressing detrimental changes to physiological status due to disease and treatment. However, current knowledge gaps regarding the physiological characteristics of ovarian cancer survivors throughout the entire survivorship spectrum challenge the development of tailored exercise intervention studies and exercise oncology guidelines.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 103 ◽  
Author(s):  
Ivan Rychlik

Studies analyzing the composition of gut microbiota are quite common at present, mainly due to the rapid development of DNA sequencing technologies within the last decade. This is valid also for chickens and their gut microbiota. However, chickens represent a specific model for host–microbiota interactions since contact between parents and offspring has been completely interrupted in domesticated chickens. Nearly all studies describe microbiota of chicks from hatcheries and these chickens are considered as references and controls. In reality, such chickens represent an extreme experimental group since control chicks should be, by nature, hatched in nests in contact with the parent hen. Not properly realising this fact and utilising only 16S rRNA sequencing results means that many conclusions are of questionable biological relevance. The specifics of chicken-related gut microbiota are therefore stressed in this review together with current knowledge of the biological role of selected microbiota members. These microbiota members are then evaluated for their intended use as a form of next-generation probiotics.


2019 ◽  
Vol 10 (6) ◽  
pp. 979-998 ◽  
Author(s):  
Riley L Hughes ◽  
Mary E Kable ◽  
Maria Marco ◽  
Nancy L Keim

ABSTRACT The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host's diet is a major component influencing the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota influence the host's metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build, utilizing and expanding upon the methods and results they present to inform future studies.


mSystems ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Owen Cronin ◽  
Wiley Barton ◽  
Peter Skuse ◽  
Nicholas C. Penney ◽  
Isabel Garcia-Perez ◽  
...  

ABSTRACT Many components of modern living exert influence on the resident intestinal microbiota of humans with resultant impact on host health. For example, exercise-associated changes in the diversity, composition, and functional profiles of microbial populations in the gut have been described in cross-sectional studies of habitual athletes. However, this relationship is also affected by changes in diet, such as changes in dietary and supplementary protein consumption, that coincide with exercise. To determine whether increasing physical activity and/or increased protein intake modulates gut microbial composition and function, we prospectively challenged healthy but sedentary adults with a short-term exercise regime, with and without concurrent daily whey protein consumption. Metagenomics- and metabolomics-based assessments demonstrated modest changes in gut microbial composition and function following increases in physical activity. Significant changes in the diversity of the gut virome were evident in participants receiving daily whey protein supplementation. Results indicate that improved body composition with exercise is not dependent on major changes in the diversity of microbial populations in the gut. The diverse microbial characteristics previously observed in long-term habitual athletes may be a later response to exercise and fitness improvement. IMPORTANCE The gut microbiota of humans is a critical component of functional development and subsequent health. It is important to understand the lifestyle and dietary factors that affect the gut microbiome and what impact these factors may have. Animal studies suggest that exercise can directly affect the gut microbiota, and elite athletes demonstrate unique beneficial and diverse gut microbiome characteristics. These characteristics are associated with levels of protein consumption and levels of physical activity. The results of this study show that increasing the fitness levels of physically inactive humans leads to modest but detectable changes in gut microbiota characteristics. For the first time, we show that regular whey protein intake leads to significant alterations to the composition of the gut virome.


Glycobiology ◽  
2020 ◽  
Author(s):  
Andrew Bell ◽  
Nathalie Juge

Abstract The gut microbiota plays a major role in human health and an alteration in gut microbiota structure and function has been implicated in several diseases. In the colon, mucus covering the epithelium is critical to maintain a homeostatic relationship with the gut microbiota by harboring a microbial community at safe distance from the epithelium surface. The mucin glycans composing the mucus layer provide binding sites and a sustainable source of nutrients to the bacteria inhabiting the mucus niche. Access to these glycan chains requires a complement of glycoside hydrolases (GHs) produced by bacteria across the phyla constituting the human gut microbiota. Due to the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria breakdown and utilize host mucin glycans has become of increased interest and is reviewed here. This short review provides an overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingying Shao ◽  
Zhixin Wang ◽  
Yingzhi He ◽  
Zhen Tan ◽  
Jibin Zhang

AbstractThe mammalian gut microbiome participates in almost all life processes in the host. In addition to diet, the breed is the main factor affecting changes in the swine gut microbiota. The composition of the gut microbiota changes significantly during different growth stages. Research on developmental changes in the gut microbiota of indigenous Chinese pig breeds is limited. In this study, the fecal microbiota of Wuzhishan pigs (a Chinese indigenous miniature pig) at different growth stages was investigated using high-throughput 16S rRNA sequencing. Firmicutes and Bacteroidetes were the two dominant phyla, accounting for more than 80% of all sequences. With increasing age, the fecal microbial diversity increased, and the proportion of Firmicutes increased, whereas the proportion of Bacteroidetes decreased. A total of 49 biomarkers with statistical differences were detected in the four growth stages. The different microbiota among groups enhanced the ability to degrade fiber, carbohydrates, and other substances during the growth stages. The endocrine system was different in multiple growth stage paired comparisons, which was attributed to the different body statuses in the growth stages. This study revealed developmental changes in the structure and function of gut microbes in local pigs.


Author(s):  
Kerri L. Coon ◽  
Michael R. Strand

Most animals including mosquitoes and other vector arthropods harbor communities of microorganisms in their digestive tract that comprise a gut microbiota. Recent studies indicate the gut microbiota strongly affects several aspects of mosquito biology. In this chapter, we first summarize current knowledge of mosquito gut microbiota composition and acquisition. We then review impacts of the gut microbiota on nutrition, development, and vector competence followed by future perspectives for using the gut microbiota in vector control and altering disease transmission.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 300
Author(s):  
Eric Banan-Mwine Daliri ◽  
Fred Kwame Ofosu ◽  
Ramachandran Chelliah ◽  
Byong H. Lee ◽  
Deog-Hwan Oh

The advent of omic technology has made it possible to identify viable but unculturable micro-organisms in the gut. Therefore, application of multi-omic technologies in gut microbiome studies has become invaluable for unveiling a comprehensive interaction between these commensals in health and disease. Meanwhile, despite the successful identification of many microbial and host–microbial cometabolites that have been reported so far, it remains difficult to clearly identify the origin and function of some proteins and metabolites that are detected in gut samples. However, the application of single omic techniques for studying the gut microbiome comes with its own challenges which may be overcome if a number of different omics techniques are combined. In this review, we discuss our current knowledge about multi-omic techniques, their challenges and future perspective in this field of gut microbiome studies.


Sign in / Sign up

Export Citation Format

Share Document