scholarly journals miR-129a-3p Inhibits PEDV Replication by Targeting the EDA-Mediated NF-κB Pathway in IPEC-J2 Cells

2021 ◽  
Vol 22 (15) ◽  
pp. 8133
Author(s):  
Xiaoyi Qi ◽  
Yue Cao ◽  
Shenglong Wu ◽  
Zhengchang Wu ◽  
Wenbin Bao

Previous studies have shown that microRNAs (miRNAs) are closely related to many viral infections. However, the molecular mechanism of how miRNAs regulate porcine epidemic diarrhea virus (PEDV) infection remains unclear. In this study, we first constructed a PEDV-infected IPEC-J2 cytopathic model to validate the relationship between miR-129a-3p expression levels and PEDV resistance. Secondly, we explored the effect of miR-129a-3p on PEDV infection by targeting the 3′UTR region of the ligand ectodysplasin (EDA) gene. Finally, transcriptome sequencing was used to analyze the downstream regulatory mechanism of EDA. The results showed that after 48 h of PEDV infection, IPEC-J2 cells showed obvious pathological changes, and miR-129a-3p expression was significantly downregulated (p < 0.01). Overexpression of miR-129a-3p mimics inhibited PEDV replication in IPEC-J2 cells; silencing endogenous miR-129a-3p can promote viral replication. A dual luciferase assay showed that miR-129a-3p could bind to the 3′UTR region of the EDA gene, which significantly reduced the expression level of EDA (p < 0.01). Functional verification showed that upregulation of EDA gene expression significantly promoted PEDV replication in IPEC-J2 cells. Overexpression of miR-129a-3p can activate the caspase activation and recruitment domain 11 (CARD11) mediated NF-κB pathway, thus inhibiting PEDV replication. The above results suggest that miR-129a-3p inhibits PEDV replication in IPEC-J2 cells by activating the NF-κB pathway by binding to the EDA 3′UTR region. Our results have laid the foundation for in-depth study of the mechanism of miR-129a-3p resistance and its application in porcine epidemic diarrhea disease-resistance breeding.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Montserrat-Elemi García-Hernández ◽  
María-Elena Trujillo-Ortega ◽  
Sofía-Lizbeth Alcaraz-Estrada ◽  
Luis Lozano-Aguirre-Beltrán ◽  
Carlos Sandoval-Jaime ◽  
...  

Swine enteric viral infections are responsible for substantial economic losses in the pork industry worldwide. Porcine epidemic diarrhea (PEDV) is one of the main causative agents of diarrhea in lactating pigs, and reports of PEDV coinfection with other enteric viruses highlight the importance of viral interactions for disease presentation and outcomes. Using next-generation sequencing (NGS) and sequence analyses from samples taken from piglets with acute diarrhea, we explored the possible interactions between PEDV and other less reported pathogens. PEDV coinfection with porcine kobuvirus (PKV) was detected in 36.4% (27/74) of samples. Full genomes from porcine coronavirus and kobuvirus were obtained, as was a partial porcine sapovirus genome (PSaV). The phylogenetic results show the clustering of these strains corresponding to the geographical relationship. To our knowledge, this is the first full genome and isolation report for porcine kobuvirus in México, as well as the first phylogenetic analysis for porcine sapovirus in the country. The NGS approach provides a better perspective of circulating viruses and other pathogens in affected production units.


2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Yuchen Li ◽  
Qingxin Wu ◽  
Yuxin Jin ◽  
Qian Yang

AbstractInterleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Chen Wang ◽  
Xi Lan ◽  
Bin Yang

Porcine kobuvirus (PKV) has circulated throughout China in recent years. Although many studies have detected it throughout the world, its molecular epidemiology has not been characterized in northwest China. To understand its prevalence, 203 fecal samples were collected from different regions of Gansu Province and tested with reverse transcription-polymerase chain reaction. In this study, we tested these samples for PKV, porcine epidemic diarrhea virus (PEDV), and sapovirus and analyzed the amplified 2C gene fragments of PKV. Overall, 126 (62.1%) samples were positive for PKV. Of the 74 piglets samples among the 203 fecal samples, 65 (87.8%) were positive for PKV. PKV infection was often accompanied by PEDV, but the relationship between the two viruses must be confirmed. A phylogenetic analysis indicated that the PKV strains isolated from the same regions clustered on the same branches. This investigation shows that PKV infections are highly prevalent in pigs in northwest China, especially in piglets with symptoms of diarrhea.


2015 ◽  
Vol 61 (11) ◽  
pp. 811-817 ◽  
Author(s):  
Yufeng Li ◽  
Fangyuan Zheng ◽  
Baochao Fan ◽  
Hassan Mushtaq Muhammad ◽  
Yao Zou ◽  
...  

Porcine epidemic diarrhea (PED) is a highly contagious, enteric disease of swine caused by the porcine epidemic diarrhea virus (PEDV). To find a suitable ELISA method to assess the infection of PEDV and the effectiveness of vaccines, we developed and evaluated an indirect enzyme-linked immunosorbent assay (iELISA) based on a truncated recombinant spike (S) protein expressed in Escherichia coli. The parameters of the iELISA were optimized, and the cutoff value determined as 0.259 by analyzing optical density (OD) values of 80 PEDV negative sera confirmed by western blot. Repeatability tests revealed that the coefficients of variation of positive sera within and between runs were both less than 10%. Cross-reactivity assays demonstrated that iELISA was PEDV-specific. A virus neutralization test with sera of 7 different OD values showed a positive correlation between the OD values and virus neutralization. The results suggest this iELISA is specific, sensitive, and repeatable. Further studies should focus on the relationship between OD values of sera and its virus neutralization.


Author(s):  
Lital Levy

A Palestinian-Israeli poet declares a new state whose language, “Homelandic,” is a combination of Arabic and Hebrew. A Jewish-Israeli author imagines a “language plague” that infects young Hebrew speakers with old world accents, and sends the narrator in search of his Arabic heritage. This book brings together such startling visions to offer the first in-depth study of the relationship between Hebrew and Arabic in the literature and culture of Israel/Palestine. More than that, the book presents a captivating portrait of the literary imagination's power to transgress political boundaries and transform ideas about language and belonging. Blending history and literature, the book traces the interwoven life of Arabic and Hebrew in Israel/Palestine from the turn of the twentieth century to the present, exposing the two languages' intimate entanglements in contemporary works of prose, poetry, film, and visual art by both Palestinian and Jewish citizens of Israel. In a context where intense political and social pressures work to identify Jews with Hebrew and Palestinians with Arabic, the book finds writers who have boldly crossed over this divide to create literature in the language of their “other,” as well as writers who bring the two languages into dialogue to rewrite them from within. Exploring such acts of poetic trespass, the book introduces new readings of canonical and lesser-known authors, including Emile Habiby, Hayyim Nahman Bialik, Anton Shammas, Saul Tchernichowsky, Samir Naqqash, Ronit Matalon, Salman Masalha, A. B. Yehoshua, and Almog Behar. By revealing uncommon visions of what it means to write in Arabic and Hebrew, the book will change the way we understand literature and culture in the shadow of the Israeli–Palestinian conflict.


2019 ◽  
Vol 16 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Qishuai Liu ◽  
Li Wang ◽  
Guizhen Yan ◽  
Weifa Zhang ◽  
Zhigang Huan ◽  
...  

Background: MicroRNAs (miRNA) are known to play a key role in the etiology and treatment of epilepsy through controlling the expression of gene. However, miR-125a-5p in the epilepsy is little known. Epilepsy in rat models was induced by Pentylenetetrazol (PTZ) and miR- 125a-5p profiles in the hippocampus were investigated in our experiment. Also, the relationship between miR-125a-5p and calmodulin-dependent protein kinase IV (CAMK4) was identified and the related mechanism was also illustrated. Methods: The miR-125a-5p mRNA expression levels were evaluated by quantitative real time polymerase chain reaction (qRT-PCR). Western Blot (WB) was used to analyze the CAMK4 protein expression levels. Seizure score, latency and duration were determined based on a Racine scale. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the inflammatory factor expression. The relationship between miR-125a-5p and CAMK4 was detected through dual luciferase assay. Results: Downregulation of miR-125a-5p was observed in the hippocampus of PTZ-induced epilepsy rats. The overexpression of miR-125a-5p attenuated seizure and decreased inflammatory factor level in the hippocampus of PTZ-induced rats. The miR-125a-5p alleviated epileptic seizure and inflammation in PTZ-induced rats by suppressing its target gene, CAMK4. Conclusion: miR-125a-5p may represent a novel therapeutic treatment for PTZ-induced epilepsy by preventing the activation of CAMK4.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gustavo Machado ◽  
Carles Vilalta ◽  
Mariana Recamonde-Mendoza ◽  
Cesar Corzo ◽  
Montserrat Torremorell ◽  
...  

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P &lt; 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Zhang ◽  
Chang Li ◽  
Bingzhou Zhang ◽  
Zhonghua Li ◽  
Wei Zeng ◽  
...  

AbstractThe variant virulent porcine epidemic diarrhea virus (PEDV) strain (YN15) can cause severe porcine epidemic diarrhea (PED); however, the attenuated vaccine-like PEDV strain (YN144) can induce immunity in piglets. To investigate the differences in pathogenesis and epigenetic mechanisms between the two strains, differential expression and correlation analyses of the microRNA (miRNA) and mRNA in swine testicular (ST) cells infected with YN15, YN144, and mock were performed on three comparison groups (YN15 vs Control, YN144 vs Control, and YN15 vs YN144). The mRNA and miRNA expression profiles were obtained using next-generation sequencing (NGS), and the differentially expressed (DE) (p-value < 0.05) mRNA and miRNA were obtained using DESeq R package. mRNAs targeted by DE miRNAs were predicted using the miRanda algortithm. 8039, 8631 and 3310 DE mRNAs, and 36, 36, and 22 DE miRNAs were identified in the three comparison groups, respectively. 14,140, 15,367 and 3771 DE miRNA–mRNA (targeted by DE miRNAs) interaction pairs with negatively correlated expression patterns were identified, and interaction networks were constructed using Cytoscape. Six DE miRNAs and six DE mRNAs were randomly selected to verify the sequencing data by real-time relative quantitative reverse transcription polymerase chain reaction (qRT-PCR). Based on bioinformatics analysis, we discovered the differences were mostly involved in host immune responses and viral pathogenicity, including NF-κB signaling pathway and bacterial invasion of epithelial cells, etc. This is the first comprehensive comparison of DE miRNA–mRNA pairs in YN15 and YN144 infection in vitro, which could provide novel strategies for the prevention and control of PED.


Sign in / Sign up

Export Citation Format

Share Document