scholarly journals Anakinra versus Baricitinib: Different Strategies for Patients Hospitalized with COVID-19

2021 ◽  
Vol 10 (17) ◽  
pp. 4019
Author(s):  
José A García-García ◽  
Marta Pérez-Quintana ◽  
Consuelo Ramos-Giráldez ◽  
Isabel Cebrián-González ◽  
María L Martín-Ponce ◽  
...  

Background: Immunomodulatory drugs have been used in patients with severe COVID-19. The objective of this study was to evaluate the effects of two different strategies, based either on an interleukin-1 inhibitor, anakinra, or on a JAK inhibitor, such as baricitinib, on the survival of patients hospitalized with COVID-19 pneumonia. Methods: Individuals admitted to two hospitals because of COVID-19 were included if they fulfilled the clinical, radiological, and laboratory criteria for moderate-to-severe disease. Patients were classified according to the first immunomodulatory drug prescribed: anakinra or baricitinib. All subjects were concomitantly treated with corticosteroids, in addition to standard care. The main outcomes were the need for invasive mechanical ventilation (IMV) and in-hospital death. Statistical analysis included propensity score matching and Cox regression model. Results: The study subjects included 125 and 217 individuals in the anakinra and baricitinib groups, respectively. IMV was required in 13 (10.4%) and 10 (4.6%) patients, respectively (p = 0.039). During this period, 22 (17.6%) and 36 (16.6%) individuals died in both groups (p = 0.811). Older age, low functional status, high comorbidity, need for IMV, elevated lactate dehydrogenase, and use of a high flow of oxygen at initially were found to be associated with worse clinical outcomes. No differences according to the immunomodulatory therapy used were observed. For most of the deceased individuals, early interruption of anakinra or baricitinib had occurred at the time of their admission to the intensive care unit. Conclusions: Similar mortality is observed in patients treated with anakinra or baricitinib plus corticosteroids.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xunliang Tong ◽  
Xiaomao Xu ◽  
Guoyue Lv ◽  
He Wang ◽  
Anqi Cheng ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that rapidly spreads worldwide and co-infection of COVID-19 and influenza may occur in some cases. We aimed to describe clinical features and outcomes of severe COVID-19 patients with co-infection of influenza virus. Methods Retrospective cohort study was performed and a total of 140 patients with severe COVID-19 were enrolled in designated wards of Sino-French New City Branch of Tongji Hospital between Feb 8th and March 15th in Wuhan city, Hubei province, China. The demographic, clinical features, laboratory indices, treatment and outcomes of these patients were collected. Results Of 140 severe COVID-19 hospitalized patients, including 73 patients (52.14%) with median age 62 years were influenza virus IgM-positive and 67 patients (47.86%) with median age 66 years were influenza virus IgM-negative. 76 (54.4%) of severe COVID-19 patients were males. Chronic comorbidities consisting mainly of hypertension (45.3%), diabetes (15.8%), chronic respiratory disease (7.2%), cardiovascular disease (5.8%), malignancy (4.3%) and chronic kidney disease (2.2%). Clinical features, including fever (≥38 °C), chill, cough, chest pain, dyspnea, diarrhea and fatigue or myalgia were collected. Fatigue or myalgia was less found in COVID-19 patients with IgM-positive (33.3% vs 50/7%, P = 0.0375). Higher proportion of prolonged activated partial thromboplastin time (APTT) > 42 s was observed in COVID-19 patients with influenza virus IgM-negative (43.8% vs 23.6%, P = 0.0127). Severe COVID-19 Patients with influenza virus IgM positive have a higher cumulative survivor rate than that of patients with influenza virus IgM negative (Log-rank P = 0.0308). Considering age is a potential confounding variable, difference in age was adjusted between different influenza virus IgM status groups, the HR was 0.29 (95% CI, 0.081–1.100). Similarly, difference in gender was adjusted as above, the HR was 0.262 (95% CI, 0.072–0.952) in the COX regression model. Conclusions Influenza virus IgM positive may be associated with decreasing in-hospital death.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Oliver J. Kennedy ◽  
Jonathan A. Fallowfield ◽  
Robin Poole ◽  
Peter C. Hayes ◽  
Julie Parkes ◽  
...  

Abstract Background Chronic liver disease (CLD) is a growing cause of morbidity and mortality worldwide, particularly in low to middle-income countries with high disease burden and limited treatment availability. Coffee consumption has been linked with lower rates of CLD, but little is known about the effects of different coffee types, which vary in chemical composition. This study aimed to investigate associations of coffee consumption, including decaffeinated, instant and ground coffee, with chronic liver disease outcomes. Methods A total of 494,585 UK Biobank participants with known coffee consumption and electronic linkage to hospital, death and cancer records were included in this study. Cox regression was used to estimate hazard ratios (HR) of incident CLD, incident CLD or steatosis, incident hepatocellular carcinoma (HCC) and death from CLD according to coffee consumption of any type as well as for decaffeinated, instant and ground coffee individually. Results Among 384,818 coffee drinkers and 109,767 non-coffee drinkers, there were 3600 cases of CLD, 5439 cases of CLD or steatosis, 184 cases of HCC and 301 deaths from CLD during a median follow-up of 10.7 years. Compared to non-coffee drinkers, coffee drinkers had lower adjusted HRs of CLD (HR 0.79, 95% CI 0.72–0.86), CLD or steatosis (HR 0.80, 95% CI 0.75–0.86), death from CLD (HR 0.51, 95% CI 0.39–0.67) and HCC (HR 0.80, 95% CI 0.54–1.19). The associations for decaffeinated, instant and ground coffee individually were similar to all types combined. Conclusion The finding that all types of coffee are protective against CLD is significant given the increasing incidence of CLD worldwide and the potential of coffee as an intervention to prevent CLD onset or progression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinghua Gao ◽  
Li Zhong ◽  
Ming Wu ◽  
Jingjing Ji ◽  
Zheying Liu ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) has spread around the world, until now, the number of positive and death cases is still increasing. Therefore, it remains important to identify risk factors for death in critically patients. Methods We collected demographic and clinical data on all severe inpatients with COVID-19. We used univariable and multivariable Cox regression methods to determine the independent risk factors related to likelihood of 28-day and 60-day survival, performing survival curve analysis. Results Of 325 patients enrolled in the study, Multi-factor Cox analysis showed increasing odds of in-hospital death associated with basic illness (hazard ratio [HR] 6.455, 95% Confidence Interval [CI] 1.658–25.139, P = 0.007), lymphopenia (HR 0.373, 95% CI 0.148–0.944, P = 0.037), higher Sequential Organ Failure Assessment (SOFA) score on admission (HR 1.171, 95% CI 1.013–1.354, P = 0.033) and being critically ill (HR 0.191, 95% CI 0.053–0.687, P = 0.011). Increasing 28-day and 60-day mortality, declining survival time and more serious inflammation and organ failure were associated with lymphocyte count < 0.8 × 109/L, SOFA score > 3, Acute Physiology and Chronic Health Evaluation II (APACHE II) score > 7, PaO2/FiO2 < 200 mmHg, IL-6 > 120 pg/ml, and CRP > 52 mg/L. Conclusions Being critically ill and lymphocyte count, SOFA score, APACHE II score, PaO2/FiO2, IL-6, and CRP on admission were associated with poor prognosis in COVID-19 patients.


Author(s):  
Richard Ofori-Asenso ◽  
Ella Zomer ◽  
Ken Chin ◽  
Si Si ◽  
Peter Markey ◽  
...  

The burden of comorbidity among stroke patients is high. The aim of this study was to examine the effect of comorbidity on the length of stay (LOS), costs, and mortality among older adults hospitalised for acute stroke. Among 776 older adults (mean age 80.1 ± 8.3 years; 46.7% female) hospitalised for acute stroke during July 2013 to December 2015 at a tertiary hospital in Melbourne, Australia, we collected data on LOS, costs, and discharge outcomes. Comorbidity was assessed via the Charlson Comorbidity Index (CCI), where a CCI score of 0–1 was considered low and a CCI ≥ 2 was high. Negative binomial regression and quantile regression were applied to examine the association between CCI and LOS and cost, respectively. Survival was evaluated with the Kaplan–Meier and Cox regression analyses. The median LOS was 1.1 days longer for patients with high CCI than for those with low CCI. In-hospital mortality rate was 18.2% (22.1% for high CCI versus 11.8% for low CCI, p < 0.0001). After controlling for confounders, high CCI was associated with longer LOS (incidence rate ratio [IRR]; 1.35, p < 0.0001) and increased likelihood of in-hospital death (hazard ratio [HR]; 1.91, p = 0.003). The adjusted median, 25th, and 75th percentile costs were AUD$2483 (26.1%), AUD$1446 (28.1%), and AUD$3140 (27.9%) higher for patients with high CCI than for those with low CCI. Among older adults hospitalised for acute stroke, higher global comorbidity (CCI ≥ 2) was associated adverse clinical outcomes. Measures to better manage comorbidities should be considered as part of wider strategies towards mitigating the social and economic impacts of stroke.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1656
Author(s):  
Emanuel Moisa ◽  
Dan Corneci ◽  
Silvius Negoita ◽  
Cristina Raluca Filimon ◽  
Andreea Serbu ◽  
...  

Background: Hematological indices can predict disease severity, progression, and death in patients with coronavirus disease-19 (COVID-19). Objectives: To study the predictive value of the dynamic changes (first 48 h after ICU admission) of the following ratios: neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), systemic inflammation index (SII), and derived neutrophil-to-lymphocyte (dNLR) for invasive mechanical ventilation (IMV) need and death in critically ill COVID-19 patients. Methods: Observational, retrospective, and multicentric analysis on 272 patients with severe or critical COVID-19 from two tertiary centers. Hematological indices were adjusted for confounders through multivariate analysis using Cox regression. Results: Patients comprised 186 males and 86 females with no difference across groups (p > 0.05). ΔNLR > 2 had the best independent predictive value for IMV need (HR = 5.05 (95% CI, 3.06–8.33, p < 0.0001)), followed by ΔSII > 340 (HR = 3.56, 95% CI 2.21–5.74, p < 0.0001) and ΔdNLR > 1 (HR = 2.61, 95% CI 1.7–4.01, p < 0.0001). Death was also best predicted by an NLR > 11 (HR = 2.25, 95% CI: 1.31–3.86, p = 0.003) followed by dNLR > 6.93 (HR = 1.89, 95% CI: 1.2–2.98, p = 0.005) and SII > 3700 (HR = 1.68, 95% CI: 1.13–2.49, p = 0.01). Conclusions: Dynamic changes of NLR, SII, and dNLR independently predict IMV need and death in critically ill COVID-19 patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline Vinit ◽  
Sophie Georgin-Lavialle ◽  
Aikaterini Theodoropoulou ◽  
Catherine Barbier ◽  
Alexandre Belot ◽  
...  

BackgroundInterleukin (IL)-1 inhibitors represent the main treatment in patients with colchicine-resistant/intolerant familial Mediterranean fever (crFMF), mevalonate kinase deficiency (MKD), and tumor necrosis factor receptor-associated periodic syndrome (TRAPS). However, the reasons for the use of IL-1 inhibitors in these diseases are still not completely clarified.ObjectiveIdentify real-life situations that led to initiating anakinra or canakinumab treatment in hereditary recurrent fevers (HRFs), combining data from an international registry and an up-to-date literature review.Patients and MethodsData were extracted from the JIRcohort, in which clinical information (demographic data, treatment, disease activity, and quality of life) on patients with FMF, MKD, and TRAPS was retrospectively collected. A literature search was conducted using Medline, EMBASE, and Cochrane databases.ResultsComplete data of 93 patients with HRF (53.8% FMF, 31.2% MKD, and 15.1% TRAPS) were analyzed. Data from both the registry and the literature review confirmed that the main reasons for use of IL-1 blockers were the following: failure of previous treatment (n = 57, 61.3% and n = 964, 75.3%, respectively), persistence of disease activity with frequent attacks (n = 44, 47.3% and n = 1,023, 79.9%) and/or uncontrolled inflammatory syndrome (n = 46, 49.5% and n = 398, 31.1%), severe disease complication or associated comorbidities (n = 38, 40.9% and n = 390, 30.4%), and worsening of patients’ quality of life (n = 36, 38.7% and n = 100, 7,8%). No reasons were specified for 12 (16.4%) JIRcohort patients and 154 (12%) patients in the literature.ConclusionIn the absence of standardized indications for IL-1 inhibitors in crFMF, MKD, and TRAPS, these results could serve as a basis for developing a treat-to-target strategy that would help clinicians codify the therapeutic escalation with IL-1 inhibitors.


2020 ◽  
Vol 45 (6) ◽  
pp. 1018-1032
Author(s):  
Imran Chaudhri ◽  
Richard Moffitt ◽  
Erin Taub ◽  
Raji R. Annadi ◽  
Minh Hoai ◽  
...  

<b><i>Introduction:</i></b> Acute kidney injury (AKI) is strongly associated with poor outcomes in hospitalized patients with coronavirus disease 2019 (COVID-19), but data on the association of proteinuria and hematuria are limited to non-US populations. In addition, admission and in-hospital measures for kidney abnormalities have not been studied separately. <b><i>Methods:</i></b> This retrospective cohort study aimed to analyze these associations in 321 patients sequentially admitted between March 7, 2020 and April 1, 2020 at Stony Brook University Medical Center, New York. We investigated the association of proteinuria, hematuria, and AKI with outcomes of inflammation, intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), and in-hospital death. We used ANOVA, <i>t</i> test, χ<sup>2</sup> test, and Fisher’s exact test for bivariate analyses and logistic regression for multivariable analysis. <b><i>Results:</i></b> Three hundred patients met the inclusion criteria for the study cohort. Multivariable analysis demonstrated that admission proteinuria was significantly associated with risk of in-hospital AKI (OR 4.71, 95% CI 1.28–17.38), while admission hematuria was associated with ICU admission (OR 4.56, 95% CI 1.12–18.64), IMV (OR 8.79, 95% CI 2.08–37.00), and death (OR 18.03, 95% CI 2.84–114.57). During hospitalization, de novo proteinuria was significantly associated with increased risk of death (OR 8.94, 95% CI 1.19–114.4, <i>p</i> = 0.04). In-hospital AKI increased (OR 27.14, 95% CI 4.44–240.17) while recovery from in-hospital AKI decreased the risk of death (OR 0.001, 95% CI 0.001–0.06). <b><i>Conclusion:</i></b> Proteinuria and hematuria both at the time of admission and during hospitalization are associated with adverse clinical outcomes in hospitalized patients with COVID-19.


2020 ◽  
pp. bmjebm-2020-111536
Author(s):  
Preeti Malik ◽  
Urvish Patel ◽  
Deep Mehta ◽  
Nidhi Patel ◽  
Raveena Kelkar ◽  
...  

ObjectiveTo evaluate association between biomarkers and outcomes in COVID-19 hospitalised patients. COVID-19 pandemic has been a challenge. Biomarkers have always played an important role in clinical decision making in various infectious diseases. It is crucial to assess the role of biomarkers in evaluating severity of disease and appropriate allocation of resources.Design and settingSystematic review and meta-analysis. English full text observational studies describing the laboratory findings and outcomes of COVID-19 hospitalised patients were identified searching PubMed, Web of Science, Scopus, medRxiv using Medical Subject Headings (MeSH) terms COVID-19 OR coronavirus OR SARS-CoV-2 OR 2019-nCoV from 1 December 2019 to 15 August 2020 following Meta-analyses Of Observational Studies in Epidemiology (MOOSE) guidelines.ParticipantsStudies having biomarkers, including lymphocyte, platelets, D-dimer, lactate dehydrogenase (LDH), C reactive protein (CRP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, procalcitonin (PCT) and creatine kinase (CK), and describing outcomes were selected with the consensus of three independent reviewers.Main outcome measuresComposite poor outcomes include intensive care unit admission, oxygen saturation <90%, invasive mechanical ventilation utilisation, severe disease, in-hospital admission and mortality. The OR and 95% CI were obtained and forest plots were created using random-effects models. Publication bias and heterogeneity were assessed by sensitivity analysis.Results32 studies with 10 491 confirmed COVID-19 patients were included. We found that lymphopenia (pooled-OR: 3.33 (95% CI: 2.51–4.41); p<0.00001), thrombocytopenia (2.36 (1.64–3.40); p<0.00001), elevated D-dimer (3.39 (2.66–4.33); p<0.00001), elevated CRP (4.37 (3.37–5.68); p<0.00001), elevated PCT (6.33 (4.24–9.45); p<0.00001), elevated CK (2.42 (1.35–4.32); p=0.003), elevated AST (2.75 (2.30–3.29); p<0.00001), elevated ALT (1.71 (1.32–2.20); p<0.00001), elevated creatinine (2.84 (1.80–4.46); p<0.00001) and LDH (5.48 (3.89–7.71); p<0.00001) were independently associated with higher risk of poor outcomes.ConclusionOur study found a significant association between lymphopenia, thrombocytopenia and elevated levels of CRP, PCT, LDH, D-dimer and COVID-19 severity. The results have the potential to be used as an early biomarker to improve the management of COVID-19 patients, by identification of high-risk patients and appropriate allocation of healthcare resources in the pandemic.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Francisco Gude ◽  
Vanessa Riveiro ◽  
Nuria Rodríguez-Núñez ◽  
Jorge Ricoy ◽  
Óscar Lado-Baleato ◽  
...  

AbstractThe prognosis of a patient with COVID-19 pneumonia is uncertain. Our objective was to establish a predictive model of disease progression to facilitate early decision-making. A retrospective study was performed of patients admitted with COVID-19 pneumonia, classified as severe (admission to the intensive care unit, mechanic invasive ventilation, or death) or non-severe. A predictive model based on clinical, laboratory, and radiological parameters was built. The probability of progression to severe disease was estimated by logistic regression analysis. Calibration and discrimination (receiver operating characteristics curves and AUC) were assessed to determine model performance. During the study period 1152 patients presented with SARS-CoV-2 infection, of whom 229 (19.9%) were admitted for pneumonia. During hospitalization, 51 (22.3%) progressed to severe disease, of whom 26 required ICU care (11.4); 17 (7.4%) underwent invasive mechanical ventilation, and 32 (14%) died of any cause. Five predictors determined within 24 h of admission were identified: Diabetes, Age, Lymphocyte count, SaO2, and pH (DALSH score). The prediction model showed a good clinical performance, including discrimination (AUC 0.87 CI 0.81, 0.92) and calibration (Brier score = 0.11). In total, 0%, 12%, and 50% of patients with severity risk scores ≤ 5%, 6–25%, and > 25% exhibited disease progression, respectively. A risk score based on five factors predicts disease progression and facilitates early decision-making according to prognosis.


Thorax ◽  
2020 ◽  
Vol 75 (11) ◽  
pp. 928-933
Author(s):  
Daniel B Rasmussen ◽  
Uffe Bodtger ◽  
Morten Lamberts ◽  
Christian Torp-Pedersen ◽  
Gunnar Gislason ◽  
...  

IntroductionPatients with chronic obstructive pulmonary disease (COPD) are undertreated with beta-blockers following myocardial infarction (MI), possibly due to fear for acute exacerbations of COPD (AECOPD). Is beta-blocker use associated with increased risk of AECOPD in patients following first-time MI?MethodsDanish nationwide study of patients with COPD following hospitalisation for MI from 2003 to 2015. Multivariable, time-dependent Cox regression accounting for varying beta-blocker use based on claimed prescriptions during up to 13 years of follow-up.ResultsA total of 10 884 patients with COPD were discharged after first-time MI. The 1-year rate of AECOPD was 35%, and 65% used beta-blockers at 1 year. Beta-blocker use was associated with a lower risk of AECOPD (multivariable-adjusted HR 0.78, 95% CI 0.74–0.83). This association was independent of the type of MI (HR 0.70, 95% CI 0.59–0.83 in ST-elevation MI (STEMI) and HR 0.80, 95% CI 0.75–0.84 in non-STEMI), presence or absence of heart failure (HR 0.82, 95% CI 0.74–0.90 and HR 0.77, 95% CI 0.72–0.82, respectively), beta-blocker dosage and type, as well as exacerbation severity. Results were similar in 1118 patients with full data on COPD severity and symptom burden (median forced expiratory volume in 1 s as percentage of predicted was 46 and majority had moderate dyspnoea), and in 1358 patients with severe COPD and frequent AECOPD with a high 1-year rate of AECOPD of 70%.DiscussionBeta-blocker use was not associated with increased risk of AECOPD following MI. This finding was independent of COPD severity, symptom burden and exacerbation history, and supports the safety of beta-blockers in patients with COPD, including high-risk patients with severe disease.


Sign in / Sign up

Export Citation Format

Share Document