scholarly journals Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2299
Author(s):  
Hiba M. Alkharabsheh ◽  
Mahmoud F. Seleiman ◽  
Omar A. Hewedy ◽  
Martin L. Battaglia ◽  
Rewaa S. Jalal ◽  
...  

The productivity of cereal crops under salt stress limits sustainable food production and food security. Barley followed by sorghum better adapts to salinity stress, while wheat and maize are moderately adapted. However, rice is a salt-sensitive crop, and its growth and grain yield are significantly impacted by salinity stress. High soil salinity can reduce water uptake, create osmotic stress in plants and, consequently, oxidative stress. Crops have evolved different tolerance mechanisms, particularly cereals, to mitigate the stressful conditions, i.e., effluxing excessive sodium (Na+) or compartmentalizing Na+ to vacuoles. Likewise, plants activate an antioxidant defense system to detoxify apoplastic cell wall acidification and reactive oxygen species (ROS). Understanding the response of field crops to salinity stress, including their resistance mechanisms, can help breed adapted varieties with high productivity under unfavourable environmental factors. In contrast, the primary stages of seed germination are more critical to osmotic stress than the vegetative stages. However, salinity stress at the reproductive stage can also decrease crop productivity. Biotechnology approaches are being used to accelerate the development of salt-adapted crops. In addition, hormones and osmolytes application can mitigate the toxicity impact of salts in cereal crops. Therefore, we review the salinity on cereal crops physiology and production, the management strategies to cope with the harmful negative effect on cereal crops physiology and production of salt stress.

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 545
Author(s):  
Kumar Nishant Chourasia ◽  
Milan Kumar Lal ◽  
Rahul Kumar Tiwari ◽  
Devanshu Dev ◽  
Hemant Balasaheb Kardile ◽  
...  

Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.


2020 ◽  
Vol 44 ◽  
Author(s):  
Hussein Abdullah Ahmed Ahmed ◽  
Nilüfer Koçak Şahin ◽  
Güray Akdoğan ◽  
Cennet Yaman ◽  
Deniz Köm ◽  
...  

ABSTRACT Salinity is one of the abiotic stresses that lead to an imbalance in the physiological processes of the plants and also affects potato growth and productivity in maınly semi-arid and growing areas. The accumulation of Na+ and Cl- ions in the cells is very toxic can influence all mechanisms and the enzymatic actions of the plants. In vitro screening of plant genotypes for osmotic stress represents a valuable tool as an alternative to field trials and can be applied based on osmotic stress tolerance. The main goal of this study was to reveal variability in salinity stress tolerance of potato varieties using in vitro screening. Stem cuttings consisting of a single node of different varieties were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of sodium chloride (NaCl) (0, 50, 100 and 150 mM). The differences among the plantlet length, number of branches, number of nodes, number of the leaflet, leaflet width, leaflet length, root length, number of the root, fresh plantlet weight, dry plantlet weight of all varieties were negatively influenced by all NaCl concentrations tested. Microtuberization and stolon growth of the varieties were also completely inhibited at high concentrations (100-150 mM). The Principal components analysis (PCA) was applied to the data matrix (15 morphological characteristics x 12 potato varieties) of the potato varieties. Also, a hierarchical cluster analysis (HCA) was used to identify the possible nearest and similarity of all morphological characteristics analyzed of the potato varieties. In grouping potato varieties, HCA and PCA results were found to be similar. We can speculate about the responses of morphological similarities of the potato varieties against salt stress. We concluded that Innovator and Kennebec are respectively the most salt-tolerant varieties. Hermes was moderately salt-tolerant and microtuberization capacity of Slaney was also high under salt stress conditions.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Emad A. Abdeldaym ◽  
Suzy M. Abdelaziz ◽  
Mohamed B. I. El-Sawy ◽  
Shady A. Mottaleb

Salinity stress is a severe environmental stress that affects plant growth and productivity of potato, a strategic crop moderately sensitive to saline soils. Limited studies are available on the use of combined nano-micronutrients to ameliorate salinity stress in potato plants (Solanum tuberosum L.). Two open field experiments were conducted in salt-affected sandy soil to investigate plant growth, physiology, and yield of potato in response to soil salinity stress under single or combined application of Zn, B, Si, and Zeolite nanoparticles. It was hypothesized that soil application of nanoparticles enhanced plant growth and yield by alleviating the adverse impact of soil salinity. In general, all the nano-treatments applications significantly increased plant height, shoot dry weight, number of stems per plant, leaf relative water content, leaf photosynthetic rate, leaf stomatal conductance, chlorophyll content, and tuber yield, as compared to the untreated control. Furthermore, soil application of these treatments increased the concentration of nutrients (N, P, K, Ca, Zn, and B) in plant tissues, leaf proline, and leaf gibberellic acid hormone (GA3) in addition to contents of protein, carbohydrates, and antioxidant enzymes (polyphenol oxidase (PPO) and peroxidase (POD) in tubers. Compared to other treatments, the combined application of nanoparticles showed the highest plant growth, physiological parameters, endogenous elements (N, P, K, Ca, Zn, and B) and the lowest concentration of leaf abscisic acid (ABA) and transpiration rate. The present findings suggest that soil addition of the aforementioned nanoparticles can be a promising approach to improving crop productivity in salt-affected soils.


2020 ◽  
Vol 11 ◽  
Author(s):  
Laura Scarabel ◽  
Silvia Panozzo ◽  
Donato Loddo ◽  
Solvejg K. Mathiassen ◽  
Michael Kristensen ◽  
...  

Annual ryegrass species (Lolium spp.) infest cereal crops worldwide. Ryegrass populations with multiple resistance to the acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors are an increasing problem in several European countries. We investigated the resistance pattern and level of resistance in ryegrass populations collected in Denmark, Greece and Italy and studied the diversity of mechanisms endowing resistance, both target-site and metabolism based. All populations showed high resistance indexes (RI) to the ALS inhibitors, iodosufuron-methyl-sodium + mesosulfuron-methyl (RI from 8 to 70), whereas the responses to the two ACCase inhibitors, clodinafop-propargyl and pinoxaden, differed. The Greek and Italian populations were moderately to highly resistant to clodinafop (RI > 8) and showed low to moderate resistance to pinoxaden (RI ranged from 3 to 13) except for one Italian population. In contrast, the Danish Lolium populations showed low to moderate resistance to clodinafop (RI ranged from 2 to 7) and only one population was resistant to pinoxaden. Different mutant ACCase alleles (Leu1781, Cys2027, Asn2041, Val2041, Gly2078, Arg2088, Ala2096) and ALS alleles (Gly122, Ala197, Gln197, Leu197, Ser197, Thr197, Val205, Asn376, Glu376, Leu574) endowing resistance were detected in the Greek and Italian populations. In several plants, no mutated ALS and ACCase alleles were found showing a great heterogeneity within and among the Greek and Italian populations. Conversely, no mutant ACCase alleles were identified in the four Danish populations and only one mutant ALS allele (Leu574) was detected in two Danish populations. The expression level of nitronate monooxygenase (NMO), glutathione S-transferase (GST) and cytochrome P450s (CYP72A1 and CYP72A2) varied broadly among populations and individual plants within the populations. Constitutive up-regulation of GST, CYP72A1 and CYP72A2 was detected in resistant plants respect to susceptible plants in one Danish and one Italian population. It appears that the mechanisms underlying resistance are rather complex and diversified among Lolium spp. populations from the three countries, coevolution of both target-site resistance and metabolic based herbicide resistance appears to be a common feature in Denmark and Italy. This must be considered and carefully evaluated in adopting resistance management strategies to control Lolium spp. in cereal crops.


2013 ◽  
Vol 23 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Rafika Yacoubi ◽  
Claudette Job ◽  
Maya Belghazi ◽  
Wided Chaibi ◽  
Dominique Job

AbstractAlfalfa (Medicago sativa L.) yield is severely compromised by soil salinity, especially at the level of seedling establishment. This question was addressed by proteomics to decipher whether specific changes in protein accumulation correlate with germination performance of alfalfa seeds submitted to a salinity stress as obtained by imbibing seeds in the presence of NaCl. This study used alfalfa seeds submitted to an osmopriming invigoration treatment that proved very efficient in counteracting the negative effect of salinity stress on germination performance. Comparative proteomic analyses disclosed 94 proteins commonly characterizing the response of both the untreated control and osmoprimed seeds to the experimental salinity stress. Remarkably, many of them, representing 84 proteins, showed contrasting accumulation patterns when comparing the untreated control and osmoprimed seeds submitted to the same salt stress. Thus numerous changes observed in the proteome of the untreated control seeds imbibed in the presence of salt, and presumably accounting for the loss in seed vigour associated with salinity stress, can be substantially reversed in osmoprimed seeds undergoing this stress. These data therefore provide a biochemical understanding of the increase in seed vigour generally observed with primed seeds.


Dendrobiology ◽  
2021 ◽  
Vol 86 ◽  
pp. 56-68
Author(s):  
Raj Kumar ◽  
Rakesh Banyal ◽  
Awtar Singh ◽  
Rajender Kumar Yadav ◽  
Parbodh Chander Sharma

Salinity stress severely affects the growth, physiological and developmental processes in plant species. Melia dubia is an ecologically and economically important tree species of the Indian subcontinent. However, systematic information with respect to the species salt tolerance potential is completely lacking. Under salt stress conditions, determining suitable soil EC range is required for the better survival, growth and productivity of the tree species. In present study, we investigated the effects of different soil salinity (EC 4, 8, and 12) levels on the ion homeostasis, physio-biochemistry, morphology, and growth of M. dubia plant. Results revealed that increase in soil salinity causes higher Na+ content and Na+/K+ ratio, while lower K+ content, in the leaf tissues of M. dubia. The physiological processes such as the photosynthetic rate, stomatal conductance, internal CO2 concentration, and transpiration rate were adversely affected with the increased salt stress levels. Morphological parameters, such as internodal length, petiole length, leaf length, and leaf width also decreased (P<0.05) under saline stress conditions. Results further indicated that salinity levels significantly (P<0.05) affected the M. dubia growth, and the growth rate was found optimum upto 8 EC, thereafter it slightly decreased with the increased salt stress to 12 EC. Our findings showed that increased salinity stress causes significant changes in the physiological, morphological, and growth pattern of M. dubia. Therefore, based on present experiment, we found M. dubia suitable for the salt affected soils of EC 8 with optimum growth rate and at EC 12 with the moderate (20–25%) growth reduction.


2021 ◽  
Vol 9 (07) ◽  
pp. 979-986
Author(s):  
Pooja N. Thaker ◽  
◽  
Nayana Brahmbhatt ◽  
Karishma Shah ◽  
◽  
...  

In recent years, salinization of soil is one of the challenging environmental concerns occurring all over the world. The effects of concentration of salt can be detected in both natural (primary) as well as man-made (secondary) environment. This is due to massive urbanization and industrialization in coastal regions, Soil salinity may lead to degradative changes in the composition of natural water resources, loss of fertile soil, loss of biodiversity, changes in local climatic conditions which in turn affects many aspects like, increasing salinization (salt affected soil) of lands converted in to non-productive conditions which significantly affects human life and posing major interruption to the economic development of farmers and their economy in the country. Furthermore, the overview of salinization and its effects on ecology, agriculture and economic growth and development is presented in this paper. Purpose of this review paper represented is according to most recent literature and refines knowledge on consistent research efforts for the types of soil salinity, problems of soil salinization, effect on plant growth and management strategies in agriculture to mitigate soil conditions in the salinity affected areas as well as rise in crop productivity and suggests future perspectives for on-going salinity research in the country.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
J.F.F. DADDARIO ◽  
D.J. BENTIVEGNA ◽  
G. TUCAT ◽  
O.A. FERNÁNDEZ

ABSTRACT Common teasel is a widespread, invasive species that has been introduced in Buenos Aires province, Argentina, where it alters the species composition of protected areas and native grasslands. A better understanding of seed germination behavior is essential for predicting its invasion potential in new areas and would be useful for developing effective management strategies. This research, conducted under laboratory conditions, evaluated the influence of several environmental factors such as pH, constant temperature, osmotic stress, salt stress and dry storage, on germination and rate of germination of common teasel seed. Between-year variation in germination responses was also examined. Seed germination was not affected by different pH levels. Although common teasel seeds germinated over a range of temperatures from 6 to 36 oC, the optimum temperature was 22 oC. Common teasel seed germination showed moderate tolerance to osmotic stress and a relatively high tolerance to salt stress. No seed germination was observed at - 1 MPa and 640 mM of osmotic potential and salt concentration, respectively. Seed germination remained high (> 90%) after all the dry storage treatments. Besides, the response of seeds to germination parameters showed between-year variation. It was shown that common teasel is able to germinate over a broad range of environmental conditions. This capacity would explain, at least partially, why this species is so widely distributed and its great potential to invade new areas.


2021 ◽  
Author(s):  
Ayman EL Sabagh ◽  
Fatih Çiğ ◽  
Seyithan Seydoşoğlu ◽  
Martin Leonardo Battaglia ◽  
Talha Javed ◽  
...  

Soil salinity has emerged as a global threat to sustainability of farming systems by deteriorating the quality and productivity of crops particularly in the coastal regions of the world. Although, as a C4 plant, maize (Zea mays L.) has ability to tolerate a medium level of salinity; but initial growth stages of maize are sensitive to salinity stress. Therefore, it is crucial to expand our understanding pertaining to maize response to salt stress and tolerance mechanisms for devising approaches to enhance maize adaptability in saline environments. Moreover, maize crop undergoes several physiological changes and adapts some mechanism to overcome the salinity stress. Different mitigation strategies like application of chemicals, plant growth-promoting hormones, and use of genetic and molecular techniques are used to manage salinity and may ensure crop productivity under changing climate. This chapter aimed to assess the recent advancement pertaining to salinity stress influence on the physio-biochemical processes in maize and to draw the relationship between yield components and salinity stress. In addition, current study also highlights research gaps by focusing the seed enhancement techniques, phytohormones exogenous application and genetic improvement of maize under soil salinity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Aaqil Khan ◽  
Atlaw Anbelu Sahile ◽  
Rahmatullah Jan ◽  
Sajjad Asaf ◽  
Muhammad Hamayun ◽  
...  

Abstract Background Salinity is a major threat to the agriculture industry due to the negative impact of salinity stress on crop productivity. In the present study, we isolated rhizobacteria and evaluated their capacities to promote crop growth under salt stress conditions. Results We isolated rhizospheric bacteria from sand dune flora of Pohang beach, Korea, and screened them for plant growth-promoting (PGP) traits. Among 55 bacterial isolates, 14 produced indole-3-acetic acid (IAA), 10 produced siderophores, and 12 produced extracellular polymeric and phosphate solubilization. Based on these PGP traits, we selected 11 isolates to assess for salinity tolerance. Among them, ALT29 and ALT43 showed the highest tolerance to salinity stress. Next, we tested the culture filtrate of isolates ALT29 and ALT43 for IAA and organic acids to confirm the presence of these PGP products. To investigate the effects of ALT29 and ALT43 on salt tolerance in soybean, we grew seedlings in 0 mM, 80 mM, 160 mM, and 240 mM NaCl treatments, inoculating half with the bacterial isolates. Inoculation with ALT29 and ALT43 significantly increased shoot length (13%), root length (21%), shoot fresh and dry weight (44 and 35%), root fresh and dry weight (9%), chlorophyll content (16–24%), Chl a (8–43%), Chl b (13–46%), and carotenoid (14–39%) content of soybean grown under salt stress. Inoculation with ALT29 and ALT43 also significantly decreased endogenous ABA levels (0.77-fold) and increased endogenous SA contents (6–16%), increased total protein (10–20%) and glutathione contents, and reduced lipid peroxidation (0.8–5-fold), superoxide anion (21–68%), peroxidase (12.14–17.97%), and polyphenol oxidase (11.76–27.06%) contents in soybean under salinity stress. In addition, soybean treated with ALT29 and ALT43 exhibited higher K+ uptake (9.34–67.03%) and reduced Na+ content (2–4.5-fold). Genes involved in salt tolerance, GmFLD19 and GmNARK, were upregulated under NaCl stress; however, significant decreases in GmFLD19 (3–12-fold) and GmNARK (1.8–3.7-fold) expression were observed in bacterial inoculated plants. Conclusion In conclusion, bacterial isolates ALT29 and ALT43 can mitigate salinity stress and increase plant growth, providing an eco-friendly approach for addressing saline conditions in agricultural production systems.


Sign in / Sign up

Export Citation Format

Share Document