scholarly journals Antibacterial Properties of a Novel Zirconium Phosphate-Glycinediphosphonate Loaded with Either Zinc or Silver

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3184 ◽  
Author(s):  
Davide Campoccia ◽  
Stefano Ravaioli ◽  
Riccardo Vivani ◽  
Anna Donnadio ◽  
Eleonora Vischini ◽  
...  

A novel compound consisting of a zirconium phosphate-glycinediphosphonate (ZPGly) has recently been introduced. This 2D-structured material forming nanosheets was exfoliated under appropriate conditions, producing colloidal aqueous dispersions (ZPGly-e) which were then loaded with zinc (Zn/ZPGly) or silver ions. Silver ions were subsequently reduced to produce metallic silver nanoparticles on exfoliated ZPGly nanosheets (Ag@ZPGly). In the search for new anti-infective materials, the present study investigated the properties of colloidal dispersions of ZPGly-e, Zn/ZPGly, and Ag@ZPGly. Ag@ZPGly was found to be a bactericidal material and was assayed to define its minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) on the five most prevalent pathogens of orthopaedic implant infections, namely: Staphylococcus aureus ATCC25923, Staphylococcus epidermidis RP62A, Enterococcus faecalis ATCC29212, Escherichia coli ATCC51739, and Pseudomonas aeruginosa ATCC27853. MIC and MBC were in the range of 125–250 μg/mL and 125–1000 μg/mL, respectively, with E. coli being the most sensitive species. Even colloidal suspensions of exfoliated ZPGly nanosheets and Zn/ZPGly exhibited some intrinsic antibacterial properties, but only at greater concentrations. Unexpectedly, Zn/ZPGly was less active than ZPGly-e.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1625
Author(s):  
Rekha Singh ◽  
Woohang Kim ◽  
James A. Smith

This study quantifies the effects of chloride ions on silver and copper release from porous ceramic cubes embedded with silver and copper and its effect on E. coli disinfection in drinking water. Log-reduction of E. coli by silver ions decreased after 4 h of contact time as the chloride ion concentration increased from 0 to 250 mg/L but, it was not changed by copper ions under the same conditions. For silver addition by silver-ceramic cubes, log reductions of E. coli decreased sharply from 7.2 to 1.6 after 12 h as the chloride concentration increased from 0 to 250 mg/L. For the silver-ceramic cube experiments, chloride ion also reduced the total silver concentration in solution. After 24 h, total silver concentrations in solution decreased from 61 µg/L to 20 µg/L for corresponding chloride ion concentrations. According to the MINTEQ equilibrium model analysis, the decrease in disinfection ability with silver embedded ceramic cubes could be the result of precipitation of silver ions as silver chloride. This suggests that AgCl was precipitating within the pore space of the ceramic. These results indicate that, although ionic silver is a highly effective disinfectant for E. coli, the presence of chloride ions can significantly reduce disinfection efficacy. For copper-ceramic cubes, log reductions of E. coli by copper embedded cubes increased from 1.2 to 1.5 when chloride ion concentration increased from 0 to 250 mg/L. Total copper concentrations in solution increased from 4 µg/L to 14 µg/L for corresponding chloride ion concentrations. These results point towards the synergistic effect of chloride ions on copper oxidation as an increased concentration of chloride enhances copper release.


2020 ◽  
Vol 15 (2) ◽  
pp. 73-82
Author(s):  
V.O. Vasylechko ◽  
V.O. Fedorenko ◽  
O.M. Gromyko ◽  
G.V. Gryshchouk ◽  
Y.M. Kalychak ◽  
...  

Sorptive properties of the acid-modified Transcarpathian clinoptilolite towards Ag(I) were studied under dynamic conditions. It was found that the most effective acid-modifier is 1 M HNO3 solution. The sorption capacity value of H-clinoptilolite under the optimal conditions is 6.15 mg of Ag per 1 g of zeolite. The solid-phase extraction procedure with acid-modified clinoptilolite was used to pre-concentrate trace amounts of silver ions in aqueous solutions and then finally to determine them by the atomic absorption method. Due to the acceptable recoveries (≥ 98 %) and RSD values (2.3-4.7 %) for tap and lake water, the developed method can be successfully applied for the determination of trace amounts of silver ions in the presence of major components of water. It was established that the initial form of clinoptilolite has a better antibacterial effect against E. coli than the H-form. However, antagonistic activity against S. aureus was lower than against E. coli in both forms. The combination of different forms of clinoptilolite with Ag(I) increases their antibacterial activity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Arfaa Sajid ◽  
Qaisar Manzoor ◽  
Anam Sajid ◽  
Muhammad Imran ◽  
Shanza Khalid ◽  
...  

Background:: Currently, developing methods for the formation of nanoparticles with antimicrobial properties based on green chemistry are the research hotspots. In this research green biosynthesis of Eriobotrya japonica extract loaded silver nanoparticles and their characterization were the main objectives to achieve. Methods:: Green synthesis of E. japonica leaves extract-loaded silver nanoparticles (AgNPs) was carried out and its effect on bacterial growth was examined. The reduction of silver ions in solution was observed using UV-Vis spectrophotometer. The properties of AgNPs were assessed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, their antibacterial effects were checked against Staphylococcus aureus and Escherichia coli. Results:: It was revealed that 5-50 nm sized spherical to elongated nanoparticles were synthesized that possessed comparatively better antibacterial potential against E. coli and S. aureus than conventional extract of the E. japonica leaves. Conclusions:: Green synthesis and effective utilization of Eriobotrya japonica extract loaded silver nanoparticles is a promising approach for nanoparticle production avoiding negative environmental impacts.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Varvara Platania ◽  
Alexandra Kaldeli-Kerou ◽  
Theodora Karamanidou ◽  
Maria Kouki ◽  
Alexander Tsouknidas ◽  
...  

A lot of effort has been dedicated recently to provide a better insight into the mechanism of the antibacterial activity of silver nanoparticles (AgNPs) colloidal suspensions and their released silver ionic counterparts. However, there is no consistency regarding whether the antibacterial effect displayed at cellular level originates from the AgNPs or their ionic constitutes. To address this issue, three colloidal suspensions exhibiting different ratios of AgNPs/silver ions were synthesized by a wet chemistry method in conjunction with tangential flow filtration, and were characterized and evaluated for their antimicrobial properties against two gram-negative, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two gram-positive, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), bacterial strains. The produced samples contained 25% AgNPs and 75% Ag ions (AgNP_25), 50% AgNPs and 50% Ag ions (AgNP_50), and 100% AgNPs (AgNP_100). The sample AgNP_100 demonstrated the lowest minimum inhibitory concentration values ranging from 4.6 to 15.6 ppm for all four bacterial strains, while all three samples indicated minimum bactericidal concentration (MBC) values ranging from 16.6 ppm to 62.5 ppm against all strains. An increase in silver ions content results in higher bactericidal activity. All three samples were found to lead to a significant morphological damage by disruption of the bacterial cell membranes as analyzed by means of scanning electron microscopy (SEM). The growth kinetics demonstrated that all three samples were able to reduce the bacterial population at a concentration of 3.1 ppm. SEM and growth kinetic data underline that S. epidermidis is the most sensitive among all strains against the investigated samples. Our results showed that all three AgNPs colloidal suspensions exhibited strong antibacterial properties and, thus, they can be applied in medical devices and antimicrobial control systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Kędziora ◽  
Robert Wieczorek ◽  
Mateusz Speruda ◽  
Iva Matolínová ◽  
Tomasz M. Goszczyński ◽  
...  

The aim of this study was to compare the antibacterial mode of action of silver ions (Ag+) and selected silver nanoformulations against E. coli strains (E. coli J53, Escherichia coli BW25113 and its derivatives: Δ ompA, Δ ompC, Δ ompF, Δ ompR, ompRG596AcusSG1130A, cusSG1130A). In this research we used various experimental methods and techniques such as determination of the minimal inhibitory concentration, flow cytometry, scanning electron microscopy, circular dichroism as well as computational methods of theoretical chemistry. Thanks to the processing of bacteria and silver samples (ions and nanoformulations), we were able to determine the bacterial sensitivity to silver samples, detect reactive oxygen species (ROS) in the bacterial cells, visualize the interaction of silver samples with the bacterial cells, and identify their interactions with proteins. Differences between the mode of action of silver ions and nanoformulations and the action of nanoformulations themselves were revealed. Based on the results of computational methods, we proposed an explanation of the differences in silver-outer protein interaction between silver ions and metallic silver; in general, the Ag0 complexes exhibit weaker interaction than Ag+ ones. Moreover, we identified two gutter-like areas of the inner layer of the ion channel: one more effective, with oxygen-rich side chains; and another one less effective, with nitrogen-rich side chains.


2013 ◽  
Vol 744 ◽  
pp. 311-314
Author(s):  
Chun Ping Wang ◽  
Shao Ping Chen ◽  
Jia Chao Chen

In order to optimize the preparation process of silver-loaded diatomite, the effect of the adsorption time, temperature and the concentration of silver nitrate on the content of silver ions in diatomite were investigated through ion exchange experiment method. And the antibacterial properties were measured by Haloes method. The samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that the loading of the silver ions is no change in the microscopic structure of the diatomite, the silver exists in diatomite as the ion. The content of silver in the diatomite is 0.523g/g under the condition of AgNO3 (0.5mol/L) and temperature 70°C. The silver-loaded diatomite has good antibacterial activity on E. coli.


2014 ◽  
Vol 14 (2) ◽  
pp. 73-75 ◽  
Author(s):  
Mehdi El Bouchti ◽  
Hassan Hannache ◽  
Said Gmouh ◽  
Naima Hanafi ◽  
Omar Cherkaoui

Abstract Polyamide 6.6 multifilaments are grafted with the monomer N-allyliminodiacetic acid for the purpose of removal of some heavy metal ions from their aqueous solutions by forming its metal chelate especially with Ag+ ion. Such a fibrous chelate-forming resin has been used with success due to its large surface area, which contains an important metal chelate-forming functional group, where metal ions are adsorbed or desorbed on its surface, and therefore having an improved adsorption and desorption capability. In previous work, chelate-forming fibre was characterised by ICP-AES analysis according to the digestion method by microwave. The antibacterial activity of the prepared fibre is investigated with Escherichia coli bacteria as reference, according to the zone of inhibition method in agar medium. The material used as reference without metal does not present any effect on E. coli. However, the chelateforming fibres with Ag+ have a strong bactericidal effect, even with a low concentration of silver ions. These modified materials can be used as highly effective bactericidal composites that may be used in future applications for the production of antimicrobial textiles, papers or polymer materials


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1411
Author(s):  
Mujahid Mehdi ◽  
Huihui Qiu ◽  
Bing Dai ◽  
Raja Fahad Qureshi ◽  
Sadam Hussain ◽  
...  

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 704
Author(s):  
Angela Di Somma ◽  
Carolina Canè ◽  
Antonio Moretta ◽  
Angela Duilio

The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications.


Sign in / Sign up

Export Citation Format

Share Document