scholarly journals In Vitro and In Vivo Neuroprotective Effects of Stellettin B Through Anti-Apoptosis and the Nrf2/HO-1 Pathway

Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 315 ◽  
Author(s):  
Chien-Wei Feng ◽  
Nan-Fu Chen ◽  
Zhi-Hong Wen ◽  
Wen-Ya Yang ◽  
Hsiao-Mei Kuo ◽  
...  

Pharmaceutical agents for halting the progression of Parkinson’s disease (PD) are lacking. The current available medications only relieve clinical symptoms and may cause severe side effects. Therefore, there is an urgent need for novel drug candidates for PD. In this study, we demonstrated the neuroprotective activity of stellettin B (SB), a compound isolated from marine sponges. We showed that SB could significantly protect SH-SY5Y cells against 6-OHDA-induced cellular damage by inhibiting cell apoptosis and oxidative stress through PI3K/Akt, MAPK, caspase cascade modulation and Nrf2/HO-1 cascade modulation, respectively. In addition, an in vivo study showed that SB reversed 6-OHDA-induced a locomotor deficit in a zebrafish model of PD. The potential for developing SB as a candidate drug for PD treatment is discussed.

2021 ◽  
Vol 10 (4) ◽  
pp. 179-187
Author(s):  
V. A. Prikhodko ◽  
A. V. Kan ◽  
Yu. I. Sysoev ◽  
I. A. Titovich ◽  
N. A. Anisimova ◽  
...  

Introduction. The search for and development of new drugs capable of reducing the severity of neurological deficit in traumatic brain injury are a critical task for investigational pharmacology. Chromone-containing allylmorpholines are a new group of neuroprotective drug candidates that have been shown to inhibit acetylcholinesterase and butyrylcholinesterase, and block N-methyl-D-aspartate receptors in vitro.Aim. This study aimed to evaluate the neuroprotective activity of the allylmorpholine derivative (E)-4-[3-(8-bromo-6-methyl-4-oxo-4H-chromen- 3-yl)-1-cyclohexylallyl]morpholin-4-ium chloride (33b) in vivo using a rat model of traumatic brain injury.Materials and methods. Traumatic brain injury was induced using the controlled cortical impact model. The allylmorpholine derivative was administered intraperitoneally at 1, 10, or 50 mg × kg-1 b.w. at 1 h after trauma induction, and then daily for the next 6 d. The neurological deficit was assessed using the Limb Placing, Open Field, Elevated Plus Maze, Beam Walking, and Cylinder tests.Results and discussion. At all doses administered, the allylmorpholine derivative had no positive effect on the motor function or exploratory behavior following traumatic brain injury. In the Elevated Plus Maze, 10 mg × kg-1 b.w. of the compound further suppressed exploratory behaviour in the injured animals, which appears to be consistent with its sedative properties observed previously in zebrafish.Conclusion. Despite the previously described in vitro affinity of allylmorpholines towards several molecular targets crucial for the pathogenesis of brain trauma and posttraumatic functional recovery, an allylmorpholine derivative had no neuroprotective effect in a rat model of traumatic brain injury in this study. These results further emphasize the importance of in vivo evaluation of potential neuroprotective drug candidates.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jin-Mu Yi ◽  
Sarah Shin ◽  
No Soo Kim ◽  
Ok-Sun Bang

Abstract Background The dried fruits of Forsythia suspensa has generally been used to clear heat and detoxify in traditional Korean and Chinese medicine. Oxaliplatin is a first-line treatment chemotherapeutic agent for advanced colorectal cancer, but it induces peripheral neuropathy as an adverse side effect affecting the treatment regimen and the patient’s quality of life. The present study was conducted to evaluate the neuroprotective effects of an aqueous extract of F. suspensa fruits (EFSF) on oxaliplatin-induced peripheral neuropathy. Methods The chemical components from EFSF were characterized and quantified using the ultra-high performance liquid chromatography-diode array detector system. The cytotoxicities of anticancer drugs in cancer cells and PC12 cells were assessed by the Ez-Cytox viability assay. To measure the in vitro neurotoxicity, the neurite outgrowth was analyzed in the primary dorsal root ganglion (DRG) cells, and neural PC12 cells that were differentiated with nerve growth factor. To evaluate the in vivo neuroprotective activity, the von Frey test was performed in six-week-old male mice (C57BL/6) receiving EFSF (60–600 mg/kg) in the presence of 20–30 mg/kg cumulative doses of oxaliplatin. Thereafter, the mice were euthanized for immunohistochemical staining analysis with an antibody against PGP9.5. Results EFSF attenuated the cytotoxic activities of the various anticancer drugs in neural PC12 cells, but did not affect the anticancer activity of oxaliplatin in human cancer cells. Oxaliplatin remarkably induced neurotoxicities including cytotoxicity and the inhibited neurite outgrowth of DRG and neural PC12 cells. However, the co-treatment of EFSF (100 μg/ml) with oxaliplatin completely reversed the oxaliplatin-induced neurotoxicity. Forsythoside A, the major component of EFSF, also exerted remarkable neuroprotective effects against the oxaliplatin-induced neurotoxicity. In addition, EFSF (60–200 mg/kg) significantly alleviated the oxaliplatin-induced mechanical allodynia and loss of intra-epidermal nerve fiber to the levels of the vehicle control in the mouse peripheral neuropathy model. Conclusions EFSF could be considered a useful herbal medicine for the treatment of peripheral neuropathy in cancer patients receiving chemotherapy with oxaliplatin.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5159 ◽  
Author(s):  
Sara Thabit ◽  
Heba Handoussa ◽  
Mariana Roxo ◽  
Nesrine S. El Sayed ◽  
Bruna Cestari de Azevedo ◽  
...  

Background Cassia fistula (L.) (Fabaceae) is a medicinal plant from tropical Asia. It is known for its marked antioxidant activity, which is attributed to its high phenolic content. The present study aims at testing both the antioxidant and neuroprotective effects of a hydroalcoholic extract from the aerial parts of Cassia fistula using the Caenorhabditis elegans model, which is widely used in this context. Methods Chemical profiling of secondary metabolites that seem to be responsible for both antioxidant and neuroprotective capacities was carried out by HPLC/PDA/ESI-MSn. Antioxidant activity was tested in vitro by CUPRAC and DPPH assays. In vivo antioxidant and neuroprotective activities were investigated using the C. elegans model. Results The Cassia extract improved the survival rate of the nematodes and protected them against oxidative stress. In addition, a decrease in the accumulation of reactive oxygen species (ROS) was observed. The important role of DAF-16/FOXO pathway was confirmed through an increased nuclear localization of the DAF-16 transcription factor, increased expression of SOD-3 stress response gene and decreased expression of HSP-16.2. Furthermore, the putative involvement of SKN-1/NRF2 pathway was demonstrated by a decrease in GST-4 levels. A neuroprotective activity of the Cassia extract was shown by a decline in polyglutamine (polyQ40) aggregate formation and a delay in paralysis caused by amyloid beta (Aβ1–42) accumulation. Discussion The Cassia extract exhibits substantial antioxidant and neuroprotective activities in vivo, which might provide a rich and novel source of natural antioxidants and neuroprotective compounds to be further studied for the use in various food and cosmetic industrial fields.


Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2505
Author(s):  
Raheem Remtulla ◽  
Sanjoy Kumar Das ◽  
Leonard A. Levin

Phosphine-borane complexes are novel chemical entities with preclinical efficacy in neuronal and ophthalmic disease models. In vitro and in vivo studies showed that the metabolites of these compounds are capable of cleaving disulfide bonds implicated in the downstream effects of axonal injury. A difficulty in using standard in silico methods for studying these drugs is that most computational tools are not designed for borane-containing compounds. Using in silico and machine learning methodologies, the absorption-distribution properties of these unique compounds were assessed. Features examined with in silico methods included cellular permeability, octanol-water partition coefficient, blood-brain barrier permeability, oral absorption and serum protein binding. The resultant neural networks demonstrated an appropriate level of accuracy and were comparable to existing in silico methodologies. Specifically, they were able to reliably predict pharmacokinetic features of known boron-containing compounds. These methods predicted that phosphine-borane compounds and their metabolites meet the necessary pharmacokinetic features for orally active drug candidates. This study showed that the combination of standard in silico predictive and machine learning models with neural networks is effective in predicting pharmacokinetic features of novel boron-containing compounds as neuroprotective drugs.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Seon-Heui Cha ◽  
Chunying Zhang ◽  
Soo-Jin Heo ◽  
Hee-Sook Jun

Pancreatic β-cell loss is critical in diabetes pathogenesis. Up to now, no effective treatment has become available for β-cell loss. A polyphenol recently isolated from Polysiphonia japonica, 5-Bromoprotocatechualdehyde (BPCA), is considered as a potential compound for the protection of β-cells. In this study, we examined palmitate (PA)-induced lipotoxicity in Ins-1 cells to test the protective effects of BPCA on insulin-secreting β-cells. Our results demonstrated that BPCA can protect β-cells from PA-induced lipotoxicity by reducing cellular damage, preventing reactive oxygen species (ROS) overproduction, and enhancing glucose-stimulated insulin secretion (GSIS). BPCA also improved mitochondrial morphology by preserving parkin protein expression. Moreover, BPCA exhibited a protective effect against PA-induced β-cell dysfunction in vivo in a zebrafish model. Our results provide strong evidence that BPCA could be a potential therapeutic agent for the management of diabetes.


Sign in / Sign up

Export Citation Format

Share Document