scholarly journals Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5524
Author(s):  
Annalisa Maruca ◽  
Roberta Rocca ◽  
Raffaella Catalano ◽  
Francesco Mesiti ◽  
Giosuè Costa ◽  
...  

Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the “drug repositioning” paradigm also to natural compounds deriving from mushrooms.

2020 ◽  
Vol 21 (15) ◽  
pp. 5339
Author(s):  
Romane Florent ◽  
Laurent Poulain ◽  
Monique N'Diaye

Failure of conventional treatments is often observed in cancer management and this requires the development of alternative therapeutic strategies. However, new drug development is known to be a high-failure process because of the possibility of a lower efficacy than expected for the drug or appearance of non-manageable side effects. Another way to find alternative therapeutic drugs consists in identifying new applications for drugs already approved for a particular disease: a concept named “drug repurposing”. In this context, several studies demonstrated the potential anti-tumour activity exerted by α1-adrenergic receptor antagonists and notably renewed interest for naftopidil as an anti-cancer drug. Naftopidil is used for benign prostatic hyperplasia management in Japan and a retrospective study brought out a reduced incidence of prostate cancer in patients that had been prescribed this drug. Further studies showed that naftopidil exerted anti-proliferative and cytotoxic effects on prostate cancer as well as several other cancer types in vitro, as well as ex vivo and in vivo. Moreover, naftopidil was demonstrated to modulate the expression of Bcl-2 family pro-apoptotic members which could be used to sensitise cancer cells to targeting therapies and to overcome resistance of cancer cells to apoptosis. For most of these anti-cancer effects, the molecular pathway is either not fully deciphered or shown to involve α1-adrenergic receptor-independent pathway, suggesting off target transduction signals. In order to improve its efficacy, naftopidil analogues were designed and shown to be effective in several studies. Thereby, naftopidil appears to display anti-cancer properties on different cancer types and could be considered as a candidate for drug repurposing although its anti-cancerous activities need to be studied more deeply in prospective randomized clinical trials.


2019 ◽  
Author(s):  
Steven M. Corsello ◽  
Rohith T. Nagari ◽  
Ryan D. Spangler ◽  
Jordan Rossen ◽  
Mustafa Kocak ◽  
...  

ABSTRACTAnti-cancer uses of non-oncology drugs have been found on occasion, but such discoveries have been serendipitous and rare. We sought to create a public resource containing the growth inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. To accomplish this, we used PRISM, which involves drug treatment of molecularly barcoded cell lines in pools. Relative barcode abundance following treatment thus reflects cell line viability. We found that an unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines. Moreover, the killing activity of the majority of these drugs was predictable based on the molecular features of the cell lines. Follow-up of several of these compounds revealed novel mechanisms. For example, compounds that kill by inducing PDE3A-SLFN12 complex formation; vanadium-containing compounds whose killing is dependent on the sulfate transporter SLC26A2; the alcohol dependence drug disulfiram, which kills cells with low expression of metallothioneins; and the anti-inflammatory drug tepoxalin, whose killing is dependent on high expression of the multi-drug resistance gene ABCB1. These results illustrate the potential of the PRISM drug repurposing resource as a starting point for new oncology therapeutic development. The resource is available at https://depmap.org.


2020 ◽  
Vol 21 (14) ◽  
pp. 4957 ◽  
Author(s):  
Federica Laudisi ◽  
Martin Marônek ◽  
Antonio Di Grazia ◽  
Giovanni Monteleone ◽  
Carmine Stolfi

Tumors of the digestive system, when combined together, account for more new cases and deaths per year than tumors arising in any other system of the body and their incidence continues to increase. Despite major efforts aimed at discovering and validating novel and effective drugs against these malignancies, the process of developing such drugs remains lengthy and costly, with high attrition rates. Drug repositioning (also known as drug repurposing), that is, the process of finding new uses for approved drugs, has been gaining popularity in oncological drug development as it provides the opportunity to expedite promising anti-cancer agents into clinical trials. Among the drugs considered for repurposing in oncology, compounds belonging to some classes of anthelmintics—a group of agents acting against infections caused by parasitic worms (helminths) that colonize the mammalian intestine—have shown pronounced anti-tumor activities and attracted particular attention due to their ability to target key oncogenic signal transduction pathways. In this review, we summarize and discuss the available experimental and clinical evidence about the use of anthelmintic drugs for the treatment of cancers of the digestive system.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2018 ◽  
Vol 18 (13) ◽  
pp. 1110-1122 ◽  
Author(s):  
Juan F. Morales ◽  
Lucas N. Alberca ◽  
Sara Chuguransky ◽  
Mauricio E. Di Ianni ◽  
Alan Talevi ◽  
...  

Much interest has been paid in the last decade on molecular predictors of promiscuity, including molecular weight, log P, molecular complexity, acidity constant and molecular topology, with correlations between promiscuity and those descriptors seemingly being context-dependent. It has been observed that certain therapeutic categories (e.g. mood disorders therapies) display a tendency to include multi-target agents (i.e. selective non-selectivity). Numerous QSAR models based on topological descriptors suggest that the topology of a given drug could be used to infer its therapeutic applications. Here, we have used descriptive statistics to explore the distribution of molecular topology descriptors and other promiscuity predictors across different therapeutic categories. Working with the publicly available ChEMBL database and 14 molecular descriptors, both hierarchical and non-hierchical clustering methods were applied to the descriptors mean values of the therapeutic categories after the refinement of the database (770 drugs grouped into 34 therapeutic categories). On the other hand, another publicly available database (repoDB) was used to retrieve cases of clinically-approved drug repositioning examples that could be classified into the therapeutic categories considered by the aforementioned clusters (111 cases), and the correspondence between the two studies was evaluated. Interestingly, a 3- cluster hierarchical clustering scheme based on only 14 molecular descriptors linked to promiscuity seem to explain up to 82.9% of approved cases of drug repurposing retrieved of repoDB. Therapeutic categories seem to display distinctive molecular patterns, which could be used as a basis for drug screening and drug design campaigns, and to unveil drug repurposing opportunities between particular therapeutic categories.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


2019 ◽  
Vol 19 (8) ◽  
pp. 1037-1047 ◽  
Author(s):  
Jihene Elloumi-Mseddi ◽  
Dhouha Msalbi ◽  
Raouia Fakhfakh ◽  
Sami Aifa

Background:Drug repositioning is becoming an ideal strategy to select new anticancer drugs. In particular, drugs treating the side effects of chemotherapy are the best candidates.Objective:In this present work, we undertook the evaluation of anti-tumour activity of two anti-diarrheal drugs (nifuroxazide and rifaximin).Methods:Anti-proliferative effect against breast cancer cells (MDA-MB-231, MCF-7 and T47D) was assessed by MTT analysis, the Brdu incorporation, mitochondrial permeability and caspase-3 activity.Results:Both the drugs displayed cytotoxic effects on MCF-7, T47D and MDA-MB-231 cells. The lowest IC50 values were obtained on MCF-7 cells after 24, 48 and 72 hours of treatment while T47D and MDA-MB-231 were more resistant. The IC50 values on T47D and MDA-MB-231 cells became significantly low after 72 hours of treatment showing a late cytotoxicity effect especially of nifuroxazide but still less important than that of MCF-7 cells. According to the IC50 values, the non-tumour cell line HEK293 seems to be less sensitive to cytotoxicity especially against rifaximin. Both the drugs have shown an accumulation of rhodamine 123 as a function of the rise of their concentrations while the Brdu incorporation decreased. Despite the absence of a significant difference in the cell cycle between the treated and non-treated MCF-7 cells, the caspase-3 activity increased with the drug concentrations rise suggesting an apoptotic effect.Conclusion:Nifuroxazide and rifaximin are used to overcome the diarrheal side effect of anticancer drugs. However, they have shown to be anti-tumour drugs which make them potential dual effective drugs against cancer and the side effects of chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document