scholarly journals Nanomaterial Lipid-Based Carrier for Non-Invasive Capsaicin Delivery; Manufacturing Scale-Up and Human Irritation Assessment

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5575
Author(s):  
Phunsuk Anantaworasakul ◽  
Songyot Anuchapreeda ◽  
Songwut Yotsawimonwat ◽  
Ornchuma Naksuriya ◽  
Suree Lekawanvijit ◽  
...  

Capsaicin is an active compound in chili peppers (Capsicum chinense) that has been approved for chronic pain treatment. The topical application of high-strength capsaicin has been proven to reduce pain; however, skin irritation is a major drawback. The aim of this study was to investigate an appropriate and scalable technique for preparing nanostructured lipid carriers (NLCs) containing 0.25% capsaicin from capsicum oleoresin (NLC_C) and to evaluate the irritation of human skin by chili-extract-loaded NLCs incorporated in a gel formulation (Gel NLC_C). High-shear homogenization with high intensity (10,000 rpm) was selected to create uniform nanoparticles with a size range from 106 to 156 nm. Both the NLC_C and Gel NLC_C formulations expressed greater physical and chemical stabilities than the free chili formulation. Release and porcine biopsy studies revealed the sustained drug release and significant permeation of the NLCs through the outer skin layer, distributing in the dermis better than the free compounds. Finally, the alleviation of irritation and the decrease in uncomfortable feelings following the application of the Gel NLC_C formulation were compared to the effects from a chili gel and a commercial product in thirty healthy volunteers. The chili-extract-loaded NLCs were shown to be applicable for the transdermal delivery of capsaicin whilst minimizing skin irritation, the major noncompliance cause of patients.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petra Vahalová ◽  
Kateřina Červinková ◽  
Michal Cifra

AbstractNowadays, modern medicine is looking for new, more gentle, and more efficient diagnostic methods. A pathological state of an organism is often closely connected with increased amount of reactive oxygen species. They can react with biomolecules and subsequent reactions can lead to very low endogenous light emission (biological autoluminescence—BAL). This phenomenon can be potentially used as a non-invasive and low-operational-cost tool for monitoring oxidative stress during diseases. To contribute to the understanding of the parameters affecting BAL, we analyzed the BAL from yeast Saccharomyces cerevisiae as a representative eukaryotic organism. The relationship between the BAL intensity and the amount of reactive oxygen species that originates as a result of the Fenton reaction as well as correlation between spontaneous BAL and selected physical and chemical parameters (pH, oxygen partial pressure, and cell concentration) during cell growth were established. Our results contribute to real-time non-invasive methodologies for monitoring oxidative processes in biomedicine and biotechnology.


Author(s):  
Marco Vinicio Alban ◽  
Haechang Lee ◽  
Hanul Moon ◽  
Seunghyup Yoo

Abstract Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require preparation steps, and are uncomfortable to wear. While dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications; the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed micro-pyramidal array electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.


2021 ◽  
Vol 316 ◽  
pp. 51-55
Author(s):  
Tamara I. Shishelova ◽  
Vadim V. Fedchishin ◽  
Mikhail A. Khramovskih

Rapid expansion of technologies poses higher requirements to structural materials and items made of them. Conventional materials are being replaced by composite materials (composites). Different additives enhancing the properties of initial materials are used as reinforcement fibers of composites. Utilization of micro-and nanosize particles for production of present-day materials is paid much attention to. Whiskers are among such materials. These crystals have high strength, high chemical and temperature resistance. But for rational utilization of whickers of different chemical composition in composite materials one should know their physical and chemical properties. Objectives of the paper: to study physical and chemical properties of whiskers in different compounds, their composition and structure; to prove experimentally the feasibility of utilizing whiskers as a reinforcement fiber of composite materials. Object of study: specimens of whiskers of silicon nitride (Si3N4), aluminum oxide (Al2O3), aluminum nitride (AlN), and mullite (Al6Si2O13). Methods of investigation: thermal study of specimens, study of mechanical properties and chemical strength, and IR-spectroscopy. Results of study: specimens of whiskers have been studied and their mechanical properties have been tabulated for comparison. Extensive thermal investigation was followed by deduction of regularities and identification of chemical properties of whiskers. IR-spectra of whiskers have been studied and conclusions on molecular composition and on presence of impurities in some whiskers have been made.


2008 ◽  
Vol 587-588 ◽  
pp. 443-447 ◽  
Author(s):  
Jose Brito Correia ◽  
Vanessa Livramento ◽  
Nobumitsu Shohoji ◽  
Elena Tresso ◽  
Kazunori Yamamoto ◽  
...  

Copper has widespread use as engineering material, because of its structural and functional properties, notably high thermal and electrical conductivity. A major drawback of this base metal and its alloys is a relatively low hardness. This precludes its utilization in applications in which both high conductivity and high strength/hardness are needed, e.g. in injection moulds for plastics. Nanostructured metals and nanocomposites are ways to address the low hardness problem, provided the nanostructured material is thermally stable during processing and service. In the present research, composite powders, with 5 to 30 at % nanodiamond, were consolidated into bulk samples. The copper-nanodiamond composite powders were vacuum encapsulated and extruded at 600°C. A significant proportion of the initial hardness in the powders is retained after extrusion. Transmission electron microscopy (TEM) of the extruded material indicates good bonding between the nanodiamond particles and the copper matrix. Raman spectroscopy on the consolidated samples evidences the presence of graphite, possibly due to partial disintegration of ultradisperse nanodiamond agglomerates.


2007 ◽  
Vol 1038 ◽  
Author(s):  
F. P. Doty ◽  
Douglas McGregor ◽  
Mark Harrison ◽  
Kip Findley ◽  
Raulf Polichar ◽  
...  

AbstractCerium and lanthanum tribromides and trichlorides form isomorphous alloys with the hexagonal UCl3 type structure, and have been shown to exhibit high luminosity and proportional response, making them attractive alternatives for room temperature gamma ray spectroscopy. However the fundamental physical and chemical properties of this system introduce challenges for material processing, scale-up, and detector fabrication. In particular, low fracture stress and perfect cleavage along prismatic planes cause profuse cracking during and after crystal growth, impeding efforts to scale this system for production of low cost, large diameter spectrometers. We have reported progress on basic materials science of the lanthanide halides. Studies to date have included thermomechanical and thermogravimetric analyses, hygroscopicity, yield strength, and fracture toughness. The observed mechanical properties pose challenging problems for material production and post processing; therefore, understanding mechanical behavior is key to fabricating large single crystals, and engineering of robust detectors and systems. Analysis of the symmetry and crystal structure of this system, including identification of densely-packed and electrically neutral planes with slip and cleavage, and comparison of relative formation and propagation energies for proposed slip systems, suggest possible mechanisms for deformation and crack initiation under stress. The low c/a ratio and low symmetry relative to traditional scintillators indicate limited and highly anisotropic plasticity cause redistribution of residual process stress to cleavage planes, initiating fracture. Ongoing work to develop fracture resistant lanthanide halides is presented.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2373 ◽  
Author(s):  
Usha Kiran Sanivada ◽  
Gonzalo Mármol ◽  
F. P. Brito ◽  
Raul Fangueiro

Multiple environmental concerns such as garbage generation, accumulation in disposal systems and recyclability are powerful drivers for the use of many biodegradable materials. Due to the new uses and requests of plastic users, the consumption of biopolymers is increasing day by day. Polylactic Acid (PLA) being one of the most promising biopolymers and researched extensively, it is emerging as a substitute for petroleum-based polymers. Similarly, owing to both environmental and economic benefits, as well as to their technical features, natural fibers are arising as likely replacements to synthetic fibers to reinforce composites for numerous products. This work reviews the current state of the art of PLA compounds reinforced with two of the high strength natural fibers for this application: flax and jute. Flax fibers are the most valuable bast-type fibers and jute is a widely available plant at an economic price across the entire Asian continent. The physical and chemical treatments of the fibers and the production processing of the green composites are exposed before reporting the main achievements of these materials for structural applications. Detailed information is summarized to understand the advances throughout the last decade and to settle the basis of the next generation of flax/jute reinforced PLA composites (200 Maximum).


2020 ◽  
Vol 30 (43) ◽  
pp. 2001485
Author(s):  
Qingfei Liang ◽  
Fei Gao ◽  
Zhiwen Zeng ◽  
Jirong Yang ◽  
Mingming Wu ◽  
...  
Keyword(s):  
Scale Up ◽  

Author(s):  
Sankha Bhattacharya ◽  
Bhupendra G Prajapati

Objective: The main objective of this experiment was to prepare and optimized celecoxib nanoemulgel. This formulation can be used for acuterheumatoid arthritis patients.Methods: Celecoxib is a poorly water soluble drug. We prepared celecoxib nanoemulgel to improve intrinsic solubility of celecoxib and enhancedeeper permeation throughout the skin. After several screening, the combination of acetonitrile, triacetin, campul 908P was considered for oil phase;acconon MC8-2EP as surfactant, and capmul MCM C-10 as a co-surfactant accordingly. As per Box-Behnken surface design model, optimization wasdone for all the 13 formulations.Results: Based on pseudo ternary plot, it was found that 4:1 Smix ratio was optimum and possessed maximum drug solubility. Further, screeningshown, 0.25-0.75% carbopol-940 can be a stable candidate for hydrogel preparation. Prepared nanoemulsions and hydrogels were admixed to preparenanoemulgel. Based on overlay plot, EG14* formulation was consider as optimum one, and various evaluation parameters were performed along withother formulations. Using Franz diffusion cell, in-vitro diffusion studies was performed. Almost all the formulations produces good qualitative drugrelease profile. The EG14* shown 95.50% drug release after 12th hrs with standard Higuchi plot (R2 value 0.9989). The optimum viscosity was foundto be 521±0.81 mPas at 100 rpm. The appearance of the formulations was milky, yellowish white with expectable pH ranged from 5.8 to 6.7. Theoptimized formulation has good spreadability coefficient, good ex-vivo diffusion enhancement factor (3.03) as compare to marketed gel. Mostly, ourformulations have less skin irritation and higher anti-inflammatory activity (92.56% of inhibition of paw edema for EG14*).Conclusion: From the thermodynamic studies, it was confirmed that EG14* maintained excellent stability profile in various heating-cooling cycle,centrifugation, and freeze-thaw cycle condition. Hence, it can be conclude that, our formulation, can be consider for pilot scale up.


Ból ◽  
2017 ◽  
Vol 18 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Teodor Goroszeniuk ◽  
Andrzej Król

Peripheral nerve stimulation (PNS) is rapidly expanding area of neuromodulation with multiple new indications for chronic pain treatment and function improvement. Since the first percutaneous lead insertion in 1999, the proliferation of nonsurgical techniques with increasingly diverse stimulating targets has resulted that PNS is now a firmly established part of neuromodulation where the majority of new exciting developments are taking place. Non Invasive Peripheral External Stimulation plays an important part in the progress. It can offer a frequently less expensive alternative to the implantable techniques and it can be used outside specialised centers. Technological advances are allowing safer and more efficient uses of PNS with improved outcomes.


Sign in / Sign up

Export Citation Format

Share Document