scholarly journals Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 60
Author(s):  
Andresa Gomes ◽  
Paulo José do Amaral Sobral

The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1554 ◽  
Author(s):  
Minji Woo ◽  
Mi Kim ◽  
Yeong Song

This study investigated the abilities of kimchi and its bioactive compounds to ameliorate amyloid beta (Aβ)-induced memory and cognitive impairments. Mice were given a single intracerebroventricular injection of Aβ25-35, followed by a daily oral administration of capsaicin (10 mg·kg-bw–1), 3-(4′-hydroxyl-3′,5′-dimethoxyphenyl)propionic acid (50 mg/kg bw), quercetin (50 mg/kg bw), ascorbic acid (50 mg/kg bw), or kimchi methanol extract (KME; 200 mg/kg bw) for 2 weeks (n = 7 per group). Carboxymethylcellulose was used as a vehicle for the normal and control groups. Behavioral task tests showed that the learning and memory abilities were significantly waned by the injected Aβ25-35, but these cognitive deficits were recovered by the administrated KME and kimchi bioactive compounds (p < 0.05). The reactive oxygen species, peroxynitrite, and thiobarbituric acid reactive substances levels were lower, and the glutathione level was higher, in the KME and bioactive compound groups than in the control group (p < 0.05). In the KME and bioactive compound groups, the protein expression levels of antioxidant enzymes (nuclear factor (erythroid-derived 2)-like 2-regulated superoxide dismutase-1 and glutathione peroxidase) were increased, whereas those of inflammation-related enzymes (nuclear factor-kappaB -regulated inducible nitric oxide synthase and cyclooxygenase-2) were decreased (p < 0.05). Thus, the antioxidative and anti-inflammatory properties of bioactive compounds-rich kimchi might help to attenuate the symptoms of Alzheimer’s disease.


2017 ◽  
Vol 95 (9) ◽  
pp. 907-916 ◽  
Author(s):  
S.S. Santos ◽  
R.V. Gonzaga ◽  
J.V. Silva ◽  
D.F. Savino ◽  
D. Prieto ◽  
...  

Dendrimers are versatile hyperbranched molecules, which have deserved attention especially for their potential in many applications, including biological. Peptide dendrimers comprise interesting classes of dendrimers, and their use has been emphasized as a drug/bioactive compound delivery system, mostly in the antineoplastic area. The bioactive molecules can be covalently linked or entrapped inside the peptide derivative. Self-assembled nanocarriers are a recent trend in the design of potential delivery systems, and pH-sensitive carriers, one of their methods, have been designed to control their systems. In addition, the use of targeting peptides or other specific groups that direct the drug/bioactive compounds to specific organs is an important trend in the search for better drug delivery systems. Recent examples have been given in the literature, showing that gene delivery as another important peptide dendrimer application. It is worth emphasizing that some peptide dendrimers show activity per se, without bioactive compounds. Immune compounds and vaccines are presented herein, as well as uses of other peptide dendrimers are briefly discussed in this review, which encompasses around 10 years of work.


Author(s):  
D.Y. Bolgova ◽  
◽  
N.A. Tarasenko ◽  
Z.S. Mukhametova ◽  
◽  
...  

Nutrition is an important factor that affects human health. The use of plant proteins as various additives in food production has now been actively developed. The rich chemical composition of pea grains determines the possibility of application in the food industry. Peas are characterized by good assimilability and degree of digestion.


2017 ◽  
Vol 19 (2) ◽  
pp. 131-139
Author(s):  
Kukuh Probo Sukmawati ◽  
Setyowati Setyowati ◽  
Th Ninuk Sri Hartini

  Background: Using of herbs and spices greatly affect the taste of foods, although the ingredients used are the same, different formulations of herbs will produce different flavors. Standardized seasonings are needed to produce a relatively similar food taste. Objective: The research aims to determine the use of herbs in animal and plant proteins. Method: This research was an observational research with cross sectional approach at PanembahanSenopati Hospital Bantul. The objects of this research were standardized seasonings inanimal and plant proteinsin the menu cycle of 10 days in Juny 2015. The data were analyzed descriptively and presented in tabular form and textural. Result: Standardized Seasonings in animal protein were B for satay and C for semur. Standardized seasonings in plant protein were B for bali, terik, rujak and D for bacem. The percentage of the use of seasoning than standardized seasoning for satay (148,7%), bali (130,3%), rujak(372%),for semur, terik and bacem the conformity are not not known because the standardized seasonings unwritten. The conformity of ingredient herbskind for satay (66,7%), semur (100%), bali (54,5%), rujak (50%), bacem (100%) and terik (100%). Conclusion:The conformity of herbs weight foranimal protein (124,3%) and plant protein (175,5%). The conformity of ingredient herbskind for animal protein (83,3%) and plant protein (76,1%). Standardized seasonings used were B, C and D.   Keywords: standardized seasonings, animal protein, plant protein


2020 ◽  
Vol 21 (11) ◽  
pp. 885-901
Author(s):  
Shubham Thakur ◽  
Amrinder Singh ◽  
Ritika Sharma ◽  
Rohan Aurora ◽  
Subheet Kumar Jain

Background: Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants. Objectives: In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications. Methods: 243 papers were reviewed and included in this review. Results: Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures. Conclusion: Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3786
Author(s):  
Elena Cristea ◽  
Aliona Ghendov-Mosanu ◽  
Antoanela Patras ◽  
Carmen Socaciu ◽  
Adela Pintea ◽  
...  

Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
João Paulo de Lima Ferreira ◽  
Alexandre José de Melo Queiroz ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10−6 m2/s, 2.9285 to 12.754 × 10−9 m2/s and 1.5393 × 10−8 to 12.4270 × 10−6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50–80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 386
Author(s):  
Natalia Matłok ◽  
Józef Gorzelany ◽  
Adam Figiel ◽  
Maciej Balawejder

The study presents the effects of fertilisation on selected quality parameters of the dried material obtained from plants of lovage and coriander. During the crop production process, the plants were treated with two fertilisers containing substances potentially acting as elicitors. The dried material was obtained in course of a drying process carried out in optimum conditions and based on the CD-VMFD method which combines convective pre-drying (CD) at a low temperature (40 °C) with vacuum-microwave finish drying with the use of 240 W microwaves (VMFD). The quality of the dried material was evaluated through measurement of the total contents of polyphenols, total antioxidant potential (ABTS and DPPH method), and the profile of volatile compounds (headspace-solid phase microextractio-HS-SPME) as well as assessment of the colour. It was found that by applying first fertilisation (with organic components) it is possible to significantly increase the contents of both bioactive compounds and volatile substances responsible for the aroma. It was determined that the higher content of bioactive compounds was related to the composition of the first fertiliser, presumably the extract from common nettle. The study showed that the application of the first fertiliser contributed to enhanced quality parameters of the raw material obtained.


Sign in / Sign up

Export Citation Format

Share Document