scholarly journals A Double-Edged Sword: Thioxanthenes Act on Both the Mind and the Microbiome

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 196
Author(s):  
Marianne Ø. Poulsen ◽  
Sujata G. Dastidar ◽  
Debalina Sinha Roy ◽  
Shauroseni Palchoudhuri ◽  
Jette Elisabeth H. Kristiansen ◽  
...  

The rising tide of antibacterial drug resistance has given rise to the virtual elimination of numerous erstwhile antibiotics, intensifying the urgent demand for novel agents. A number of drugs have been found to possess potent antimicrobial action during the past several years and have the potential to supplement or even replace the antibiotics. Many of these ‘non-antibiotics’, as they are referred to, belong to the widely used class of neuroleptics, the phenothiazines. Another chemically and pharmacologically related class is the thioxanthenes, differing in that the aromatic N of the central phenothiazine ring has been replaced by a C atom. Such “carbon-analogues” were primarily synthesized with the hope that these would be devoid of some of the toxic effects of phenothiazines. Intensive studies on syntheses, as well as chemical and pharmacological properties of thioxanthenes, were initiated in the late 1950s. Although a rather close parallelism with respect to structure activity relationships could be observed between phenothiazines and thioxanthenes; several thioxanthenes were synthesized in pharmaceutical industries and applied for human use as neuroleptics. Antibacterial activities of thioxanthenes came to be recognized in the early 1980s in Europe. During the following years, many of these drugs were found not only to be antibacterial agents but also to possess anti-mycobacterial, antiviral (including anti-HIV and anti-SARS-CoV-2) and anti-parasitic properties. Thus, this group of drugs, which has an inhibitory effect on the growth of a wide variety of microorganisms, needs to be explored for syntheses of novel antimicrobial agents. The purpose of this review is to summarize the neuroleptic and antimicrobial properties of this exciting group of bioactive molecules with a goal of identifying potential structures worthy of future exploration.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Y. Kaddouri ◽  
B. Bouchal ◽  
F. Abrigach ◽  
M. El Kodadi ◽  
M. Bellaoui ◽  
...  

Newly synthesized compounds of N-alkylated heterocyclic compounds were prepared by condensation of amine with alcohol which undergoes a reaction of SN2. These newly synthesized derivatives were characterized by spectral analysis. The objective is to prepare new potent nontoxic antimicrobial agents which are easy to synthesize and could be scaled up in pharmaceutical industries. Thirteen new heterocyclic compounds containing a pyrazole moiety were synthesized with good yields (29.79 to 99.6%) and were characterized by FTIR, 1H NMR, 13C NMR, and CG-MS techniques. The compounds were divided into two series—monoalkylated compounds (1–11) and tetra-alkylated compounds (12 and 13)—and then evaluated for their in vitro antifungal and antibacterial activities against several fungal and bacterial strains. None of the monoalkylated compounds had antibacterial or antifungal activity. However, the two tetra-alkylated pyrazole ligands displayed strong antibacterial potential. Moreover, compound 12 was more potent against all tested bacterial strains than compound 13. Interestingly, compounds 12 and 13 acted as weak antifungal agents against Saccharomyces cerevisiae. ADME-Tox studies suggested that compounds 12 and 13 exhibit better toxicity profiles than the commercial antibiotic streptomycin. MEP studies suggested that compounds 12 and 13 have the same charge locations but differ in their values which are due to the condensed geometry of compound 13 that make it more polarizable than compound 12. Of particular interest, these different MEPs were evident in ligand protein docking, suggesting that compound 12 has better affinity with MGL enzyme than compound 13. All these findings suggested that these novel compounds represent promising antibacterial lead compounds.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruopeng Yang ◽  
Xiu Chen ◽  
Qiang Huang ◽  
Chuying Chen ◽  
Kannan R. R. Rengasamy ◽  
...  

Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.


2019 ◽  
Vol 6 ◽  
pp. 10-16 ◽  
Author(s):  
Tetiana Krupodorova ◽  
Victor Barshteyn ◽  
Elena Pokas

The antibacterial activity of Fomitopsis betulina cultural liquid (native, native concentrated, lyophilized, dried) against standard bacteria (Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Staphylococcus aureus АТСС 25923), and clinical isolates (Acinetobacter baumannii 50/1496 MBL, A. baumannii 88/2995 MBL, E. coli 116/3196 KPC, Klebsiella pneumoniae 6/509 ESBL, AmpC, KPC, P. aeruginosa 99/3066 MBL, P. aeruginosa 125/3343 MBL, S. haemoliticus 22/824 MRSA, S. aureus 134/3569 MRCNS) has been evaluated by the serial dilutions method. The antibacterial activity of F. betulina against S. haemoliticus and A. baumannii has been found for the first time. All samples of F. betulina cultural liquid demonstrated the inhibitory effect against standard bacterial strains at the minimum bactericidal concentration (MBC) ranging from >2.0 up to 18.75 mg/ml, and against multidrug-resistant clinical isolates with MBC from 7.8 up to 48.42 mg/ml. The dried F. betulina cultural liquid showed the highest antimicrobial activity against standard bacteria and clinical isolates, except A. baumannii 50/1496 MBL, while native concentrated cultural liquid was the most effective against this pathogen. The study showed that the antibacterial activity of the cultural liquid of F. betulina was improved by concentration and drying. The results obtained indicate that F. betulina cultural liquid contains alternative antimicrobial agents, useful for the treatment of bacterial diseases and might be a perspective substance for the pharmaceutical industries


2020 ◽  
Vol 7 (1) ◽  
pp. 39-47
Author(s):  
Suzita Ramli ◽  
Wong Jun Xian ◽  
Noor Azira Abd Mutalib

Centella asiatica (C. asiatica) has been widely used as traditional or alternative medicine for thousand years due to its capabilities to cure various kinds of diseases. This plant has been used widely to prepare numerous kinds of food and beverages in many countries due to its beneficial functional properties. Active compounds that contribute to its antimicrobial properties are madecassic acid, asiatic acid, madecassoside, and asiaticoside. C. asiatica extract can inhibit majorities of foodborne pathogenic and spoilage microorganisms. It also contained antioxidant properties and has been proven to have an insignificant toxicity effect on human consumption. Currently, there is an increase of interest in research development for natural antioxidants and antimicrobial agents to replace the synthetic types in the food industry. This review presents information on the antioxidant capabilities of C. asiatica and its function to inhibit, reduce or minimize microbial growth. The toxicity and safety aspects of consuming C. asiatica extract has also been highlighted to provide essential data for the development of natural preservatives.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1005
Author(s):  
Zehra Edis ◽  
Radhika Raheja ◽  
Samir Haj Bloukh ◽  
Richie R. Bhandareh ◽  
Hamid Abu Sara ◽  
...  

The non-toxic inorganic antimicrobial agents iodine (I2) and copper (Cu) are interesting alternatives for biocidal applications. Iodine is broad-spectrum antimicrobial agent but its use is overshadowed by compound instability, uncontrolled iodine release and short-term effectiveness. These disadvantages can be reduced by forming complex-stabilized, polymeric polyiodides. In a facile, in-vitro synthesis we prepared the copper-pentaiodide complex [Cu(H2O)6(12-crown-4)5]I6 ´ 2I2, investigated its structure and antimicrobial properties. The chemical structure of the compound has been verified. We used agar well and disc-diffusion method assays against nine microbial reference strains in comparison to common antibiotics. The stable complex revealed excellent inhibition zones against C. albicans WDCM 00054, and strong antibacterial activities against several pathogens. [Cu(H2O)6(12-crown-4)5]I6 ´ 2I2 is a strong antimicrobial agent with an interesting crystal structure consisting of complexes located on an inversion center and surrounded by six 12-crown-4 molecules forming a cationic substructure. The six 12-crown-4 molecules form hydrogen bonds with the central Cu(H2O)6 . The anionic substructure is a halogen bonded polymer which is formed by formal I5− repetition units. The topology of this chain-type polyiodide is unique. The I5− repetition units can be understood as a triodide anion connected to two iodine molecules.


2021 ◽  
Vol 12 (5) ◽  
pp. 6543-6556

Postbiotics, products, or metabolites secreted by living probiotic bacteria like teichoic acids, peptides, enzymes, peptidoglycans, polysaccharides, organic acids, and external cell proteins are said to be produced during the bacterial fermentation process. However, postbiotics may provide immunization, antioxidant, prevents inflammation, low cholesterolemic, antimicrobial, antagonistic obesity, contrast hypertensive, and diabetic retinopathy impacts. In the current review, we attempt to display the antimicrobial performance of postbiotics. In this regard, we considered microbial strains used as postbiotic sources and postbiotics as antimicrobial agents in food products. All databases such as Science Direct, Scopus, Pub Med, and Google Scholar were examined using the following keywords: “postbiotics”, “Antimicrobial activity”, “Anti-inflammatory”, and “Low cholesterolemic”. Further studies demonstrated that probiotics are fed special forms of fiber (prebiotic) molecules, indicating substances known as postbiotics. Furthermore, short-chain fatty acids (SCFAs) like acetate, propionate, and butyrate are among the comprehensively investigated postbiotics. The extraction and purification of these compounds are carried out by means of dialysis, centrifugation, and freeze-drying techniques. According to the gained results, postbiotics assist in improving host health by increasing certain physiological functions. Furthermore, postbiotics can be used to increment the useful lifetime of different foods, like dairy products. It has also been shown that manually adding postbiotics to such products prevents the growth and proliferation of molds and thus the spoilage caused by them. This inhibitory effect indicates the antimicrobial properties of these compounds. Finally, we will see significant advances in the biological preservation of products, especially in the food industry.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 660-666 ◽  
Author(s):  
Jie-fang Kang ◽  
Yuan Zhang ◽  
Yong-liang Du ◽  
Zhe-zhi Wang

We examined the composition and antimicrobial activity of two essential oils from Chloranthus japonicus Sieb. and Chloranthus multistachys Pei. GC-FID and GC-MS analyses identifi ed 48 and 39 compounds, which represented 95.56% and 94.58%, respectively, of all components in these oils. Of these, 28 compounds were common to both, with a relatively high amount of oxygenated monoterpenes (50.95% and 39.97%). Antimicrobial properties were evaluated in vitro via disc diffusion and microbroth dilution assays. Activities were strong against most tested microorganisms, with inhibition zones ranging from 8.1 to 22.2 mm. For both species, minimum values for inhibitory and bactericidal concentrations were 0.39 to 12.50 mg/mL and 0.78 to 50.00 mg/mL, respectively. These results suggest that these essential oils are potent natural sources of antimicrobial agents for the medicinal and pharmaceutical industries


Author(s):  
Ameri E ◽  
Shariati FP ◽  
Amrei HD

Finding new antimicrobial agents from natural compounds with less side effects has been considered by number of researchers in the world. It is important to achieve efficient and up-to-date results in order to identify a substance with antimicrobial properties and achieve operational methods to increase these traits in a society where the prevalence of various diseases has been increased. In fact, the purpose of this study was to achieve compounds from microalgae with antimicrobial properties to be used in food and pharmaceutical industries that can have good consequences for human health. Therefore, in the current study antimicrobial activity of ethanolic extract of microalgae Chlorella sp., that was cultivated under different light conditions, was investigated. For this purpose, microalgae Chlorella sp. was separately cultivated under red, blue, green and white lights with intensity of 109 (μmol-photon m-2 s-1) and antimicrobial potential of the microalgae extracts investigated against the activity of Streptococcus mutans. In addition, Minimal Inhibitory Concentration (MIC) of the extracts determined. Based on the results, the wet extracts indicated more average antimicrobial activity than dried ones. Furthermore, the wet extract of microalgae cultivated under the red light showed a stronger antimicrobial activity compared to extract obtained under the other light spectrum with the minimum inhibitory of that was 10 mg/ml. Also, extract obtained under white light had no significant antibacterial activity against the bacterial strain.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document