scholarly journals Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2193 ◽  
Author(s):  
Ran An ◽  
Ellen Wilms ◽  
Agnieszka Smolinska ◽  
Gerben D.A. Hermes ◽  
Ad A.M. Masclee ◽  
...  

Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12120
Author(s):  
Andreia G. Arruda ◽  
Loic Deblais ◽  
Vanessa L. Hale ◽  
Christopher Madden ◽  
Monique Pairis-Garcia ◽  
...  

Background Cull sows are a unique population on swine farms, often representing poor producing or compromised animals, and even though recent studies have reported that the microbiome is associated with susceptibility to diseases, the microbiome of the cull sow population has not been explored. The main objective of this study was to investigate whether there were differences in fecal and upper respiratory tract microbiota composition for groups of sows of different health status (healthy, cull, and compromised/ clinical sows) and from different farms (1 to 6). Methods Six swine farms were visited once. Thirty individual fecal samples and nasal swabs were obtained at each farm and pooled by five across health status and farm. Samples underwent 16S rRNA gene amplicon sequencing and nasal and fecal microbiota were analyzed using QIIME2 v.2021.4. Results Overall, the diversity of the nasal microbiota was lower than the fecal microbiota (p < 0.01). No significant differences were found in fecal or nasal alpha diversity by sow’s health status or by farm. There were significant differences in nasal microbial composition by farm and health status (PERMANOVA, p < 0.05), and in fecal microbiota by farm (PERMANOVA, p < 0.05), but not by health status. Lastly, at the L7 level, there was one differentially abundant taxa across farms for each nasal and fecal pooled samples. Discussion This study provided baseline information for nasal and fecal microbiota of sows under field conditions, and results suggest that farm of origin can affect microbial diversity and composition. Furthermore, sow’s health status may have an impact on the nasal microbiota composition.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Bui Phan Thu Hang ◽  
Ewa Wredle ◽  
Johan Dicksved

AbstractThe aim of this study was to characterize the colostrum and fecal microbiota in calves and to investigate whether fecal microbiota composition was related to colostrum microbiota or factors associated with calf health. Colostrum samples were collected in buckets after hand milking of 76 calving cows from 38 smallholder dairy farms. Fecal samples were taken directly from the rectum of 76 calves at birth and at 14 days age. The bacterial community structure in colostrum and feces was analyzed by terminal restriction fragment length polymorphism for all samples, and the microbial composition was determined by 16S rRNA gene amplicon sequencing for a subset of the samples (8 colostrum, 40 fecal samples). There was a significant difference in fecal microbiota composition between day 0 and day 14 samples, but no associations between the microbiota and average daily gain, birth weight, or transfer of passive immunity. At 14 days of age, Faecalibacterium and Butyricicoccus were prevalent in higher relative abundances in the gut of healthy calves compared to calves with diarrhea that had been treated with antimicrobials. Colostrum showed great variation in composition of microbiota but no association to fecal microbiota. This study provides the first insights into the composition of colostrum and fecal microbiota of young dairy calves in southern Vietnam and can form the basis for future more detailed studies.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 744 ◽  
Author(s):  
Jose Jaimes ◽  
Veronika Jarosova ◽  
Ondrej Vesely ◽  
Chahrazed Mekadim ◽  
Jakub Mrazek ◽  
...  

Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota. These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial composition. Understanding this relationship could be used to positively impact health by phenolic supplementation and thus create favorable colonic conditions. This study explored the effect of six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by 16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels. Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium, and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the relative abundance when compared to the control. An opposite effect to the control was observed for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations of metabolite types and bacterial genus were detected. Conclusions: There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.


Author(s):  
Caspar Bundgaard-Nielsen ◽  
Nadia Ammitzbøll ◽  
Yusuf Abdi Isse ◽  
Abdisalam Muqtar ◽  
Ann-Maria Jensen ◽  
...  

AbstractBackgroundNew sensitive techniques have revealed a large population of bacteria in the human urinary tract, challenging the perception of the urine of healthy humans being sterile. While the role of this urinary microbiota is unknown, dysbiosis has been linked to disorders like urgency urinary incontinence and interstitial cystitis. When comparing studies it is crucial to account for possible confounders introduced due to methodological differences. Here we investigated whether storage condition or time of collection, had any impact on the urinary microbial composition.ResultsFor comparison of different storage conditions, urine was collected from five healthy adult female donors, and analyzed by 16S rRNA gene sequencing. Using the same methods, the daily or day-to-day variation in urinary microbiota was investigated in nineteen healthy donors, including four women, five men, five girls, and five boys. With the exception of two male adult donors, none of the tested conditions gave rise to significant differences in alpha and beta diversities between individuals. Conclusion: The composition of the urinary microbiota was found to be highly resilient to changes introduced by storage temperature and duration. In addition, we did not observe any intrapersonal daily or day-to-day variations in microbiota composition in women, girls or boys.Together our study supports flexibility in study design, when conducting urinary microbiota studies.Author summaryThe discovery of bacteria native to the urinary tract in healthy people, a location previously believed to be sterile, has prompted research into the clinical potential of these bacteria. However, methodological weaknesses can significantly influence such studies, and thus development of robust techniques for investigating these bacteria are needed. In the present study, we investigated whether differences in storage following collection, could affect the bacterial composition of urine samples. Next, we investigated if this composition exhibited daily or day-to-day variations.Firstly, we found, that the bacterial composition of urine could be maintained by storage at −80 °C, −20 °C, or refrigerated at 4 °C. Secondly, the bacterial composition of urine remained stable over time. Overall, the results of this study provide information important to study design in future investigations into the clinical implications of urinary bacteria.


2021 ◽  
Vol 21 (04) ◽  
pp. 17854-17875
Author(s):  
Edda Lungu ◽  
◽  
J Auger ◽  
A Piano ◽  
WJ Dahl ◽  
...  

Dietary fiber favorably modulates gut microbiota and may be protective against diarrhea in sub-Saharan Africa where rates in infants and young children are high. Soybean hull is high in fiber and accessible in rural Africa; however, its use in complementary feeding has not been evaluated. The objective of this study was to determine the acceptability and feasibility of a soybean, soy hull fiber, and maize (SFM) blend food; the primary outcome was compliance to the feeding protocol. Secondary outcomes were stool form and frequency, fecal microbiota composition, growth and dietary intake. In a parallel, single-blind study, children 6-36 months of age from the Lilongwe district of Malawi were randomized to receive daily SFM (n=69) or maize only(n=10) porridge(phala) for 6 months. Anthropometrics were measured monthly, and compliance, stool frequency,and stool form, weekly. At baseline, 3-month,and 6-month (study end) time points, dietary intake (24-h recall) was assessed,and fecal samples were collected. Fecal DNA was analyzed by Real-Time polymerase chain reaction (PCR) for microbes of interest and 16S rRNA gene amplicon sequencing. Mothers accessed the acceptability and feasibility of the study foods at study end. Mothers reported excellent compliance to feeding the SFM porridge, rated it more acceptable than maize,and noted improved appetite, weight, and stool consistency of their children. Stool frequency at baseline (2±1 stools/d) was unchanged with intervention; however, there were significantly fewer diarrhea-type stools reported during study months 4-6 vs.1-3 for the SFM group, whereas no improvement was seen for the maize group. At study end, the fecal abundance ofAkkermansia muciniphila was enriched in children receiving the SFM, compared to maize (p<0.05), and a trend for increased Faecalibacterium prausnitzii (p=0.07) was seen. A comparison of fecal microbiota composition using linear discriminant analysis effect size (LEfSe)showed notable differences in numerous taxa in the SFM group compared to baseline, whereas the maize comparator exhibited fewer changes. Fiber intake was higher for the SFMgroup, compared to maize at 6 months (13.7±3.8 vs. 8.4±4.5 g/day, p<0.01). Weight-for-height and BMI-for-age Z-scores were significantly higher for the SFM group. In young Malawian children, feeding a blend of soybean, soy hulls and maize reduced diarrhea-type stools and increased the abundance of Akkermansia muciniphila, a bacterial species involved in maintaining intestinal health, and thus may provide a feasible means of improving wellness in children in resource-poor settings through the modulation of microbiota composition.


2021 ◽  
Vol 9 (8) ◽  
pp. 1723
Author(s):  
Jacques Gonzales ◽  
Justine Marchix ◽  
Laetitia Aymeric ◽  
Catherine Le Berre-Scoul ◽  
Johanna Zoppi ◽  
...  

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS–ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS–HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1β. In addition, the expression of glial and neuronal molecules was reduced by FS–ASD as compared to FS-HC in particular for those involved in neuronal connectivity (βIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.


2019 ◽  
Vol 180 (3) ◽  
pp. 165-176 ◽  
Author(s):  
Hanieh-Sadat Ejtahed ◽  
Raul Y Tito ◽  
Seyed-Davar Siadat ◽  
Shirin Hasani-Ranjbar ◽  
Zahra Hoseini-Tavassol ◽  
...  

Objective The increasing prevalence of obesity over the past few decades constitutes a global health challenge. Pharmacological therapy is recommended to accompany life-style modification for obesity management. Here, we perform a clinical trial to investigate the effects of metformin on anthropometric indices and gut microbiota composition in non-diabetic, treatment-naive obese women with a low-calorie diet (LCD). Design Randomized double-blind parallel-group clinical trial Methods Forty-six obese women were randomly assigned to the metformin (500 mg/tab) or placebo groups using computer-generated random numbers. Subjects in both groups took two tablets per day for 2 months. Anthropometric measurements and collection of blood and fecal samples were done at the baseline and at the end of the trial. Gut microbiota composition was assessed using 16S rRNA amplicon sequencing. Results Twenty-four and twenty-two subjects were included in the metformin + LCD and placebo + LCD groups, respectively; at the end of trial, 20 and 16 subjects were analyzed. The metformin + LCD and placebo + LCD caused a 4.5 and 2.6% decrease in BMI from the baseline values, respectively (P < 0.01). Insulin concentration decreased in the metformin + LCD group (P = 0.046). The overall fecal microbiota composition and diversity were unaffected in the metformin + LCD group. However, a significant specific increase in Escherichia/Shigella abundance was observed after metformin + LCD intervention (P = 0.026). Fecal acetate concentration, but not producers, was significantly higher in the placebo + LCD group, adjusted for baseline values and BMI (P = 0.002). Conclusions Despite the weight reduction after metformin intake, the overall fecal microbiota composition remained largely unchanged in obese women, with exception of changes in specific proteobacterial groups.


2020 ◽  
Vol 34 (5) ◽  
pp. 650-660 ◽  
Author(s):  
Xiang Liu ◽  
Jing Tao ◽  
Jing Li ◽  
Xiaolin Cao ◽  
Yong Li ◽  
...  

Background The gut microbiota plays an important role in shaping the immune system and may be closely connected to the development of allergic diseases. Objective This study aimed to determine the gut microbiota composition in Chinese allergic rhinitis (AR) patients as compared with healthy controls (HCs). Methods We collected stool samples from 93 AR patients and 72 age- and sex-matched HCs. Gut microbiota composition was analyzed using QIIME targeting the 16S rRNA gene. Functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. Statistical analysis was performed using the R program, linear discriminant analysis effect size (LefSe), analysis of QIIME, and statistical analysis of metagenomic profiles, among other tests. Results Compared with HCs, AR patients had significantly lower gut-microbiota α-diversity ( P < .001). The gut microbiota composition significantly differed between the 2 study groups. At the phylum level, the relative abundance of Bacteroidetes was higher while those of Actinobacteria and Proteobacteria were lower in the AR group than in the HC group ( P < .001, q < 0.001). At the genus level, Escherichia-Shigella, Prevotella, and Parabacteroides ( P < .001, q < 0.001) had significantly higher relative abundances in the AR group than in the HC group. LefSe analysis indicated that Escherichia-Shigella, Lachnoclostridium, Parabacteroides, and Dialister were potential biomarkers for AR. In addition, predictive metagenome functional analysis showed that pyruvate, porphyrin, chlorophyll, purine metabolism, and peptidoglycan biosynthesis significantly differed between the AR and HC groups. Conclusion A comparison of the gut microbiota of AR patients and HCs suggested that dysbiosis of the fecal microbiota is involved in the development of AR. The present results may reveal key differences and identify targets for preventive or therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document