scholarly journals Photorhabdus spp.: An Overview of the Beneficial Aspects of Mutualistic Bacteria of Insecticidal Nematodes

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1660
Author(s):  
Mahfouz M. M. Abd-Elgawad

The current approaches to sustainable agricultural development aspire to use safer means to control pests and pathogens. Photorhabdus bacteria that are insecticidal symbionts of entomopathogenic nematodes in the genus Heterorhabditis can provide such a service with a treasure trove of insecticidal compounds and an ability to cope with the insect immune system. This review highlights the need of Photorhabdus-derived insecticidal, fungicidal, pharmaceutical, parasiticidal, antimicrobial, and toxic materials to fit into current, or emerging, holistic strategies, mainly for managing plant pests and pathogens. The widespread use of these bacteria, however, has been slow, due to cost, natural presence within the uneven distribution of their nematode partners, and problems with trait stability during in vitro culture. Yet, progress has been made, showing an ability to overcome these obstacles via offering affordable mass production and mastered genome sequencing, while detecting more of their beneficial bacterial species/strains. Their high pathogenicity to a wide range of arthropods, efficiency against diseases, and versatility, suggest future promising industrial products. The many useful properties of these bacteria can facilitate their integration with other pest/disease management tactics for crop protection.

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 664 ◽  
Author(s):  
Madrières ◽  
Castel ◽  
Murri ◽  
Vulin ◽  
Marianneau ◽  
...  

Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.


2019 ◽  
Vol 116 (20) ◽  
pp. 10072-10080 ◽  
Author(s):  
Bradley E. Poulsen ◽  
Rui Yang ◽  
Anne E. Clatworthy ◽  
Tiantian White ◽  
Sarah J. Osmulski ◽  
...  

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains ofPseudomonas aeruginosaon five different media and developed a statistical model,FiTnEss, to classify genes as essential versus nonessential across all strain–medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient inP. aeruginosato converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


2021 ◽  
Vol 22 (19) ◽  
pp. 10436
Author(s):  
José Ramos-Vivas ◽  
Joshua Superio ◽  
Jorge Galindo-Villegas ◽  
Félix Acosta

Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.


2020 ◽  
pp. jlr.TR120000806 ◽  
Author(s):  
Raju V. S. Rajala

The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (PIs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of PI kinases and PI phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule phosphatidylinositol. PI signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane binding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIs in general, in this review, we discuss recent studies and advances in PI lipid signaling in the retina. We specifically focus on PI lipids from vertebrate (e.g. bovine, rat, mice, toad, and zebrafish) and invertebrate (e.g. drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIs revealed from animal models and human diseases, and methods to study PI levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PI-modifying enzymes/phosphatases and further unravel PI regulation and function in the different cell types of the retina.


1988 ◽  
Vol 34 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Richard P. Ellen ◽  
Susanne Schwarz-Faulkner ◽  
David A. Grove

Teeth offer nonshedding surfaces on which a wide range of bacterial species accumulate as thick, cohesive plaques. Intergeneric coaggregation mediated by specific recognition between surface "cohesins" is thought to contribute to both the cohesiveness of plaque and the sequence in which bacteria colonize the tooth surface. There is some evidence that Gram-positive species, like the efficient tooth colonizer Actinomyces viscosus, enhance subsequent tooth colonization by the more virulent periodontal pathogen Bacteroides gingivalis. To study their mechanism of cohesion, we have developed an in vitro assay that measures the sequential binding of tritium-labeled B. gingivalis to A. viscosus adsorbed to saliva-coated hydroxyapatite beads, mimicking teeth (actinobeads). The assay yields equilibrium and kinetics data amenable to statistical analysis. The presence of A. viscosus significantly increased the number of B. gingivalis cells bound. Inhibition studies were conducted to test the sensitivity of binding to heat; to various saccharides and sugar amines; to proteolytic treatment of Bacteroides; and to incorporation of various chaotropic agents, increased KCl, and saliva in the suspension buffer. Heating the Bacteroides cells but not the actinobeads diminished Bacteroides adherence. Proteolysis and various saccharides had little, if any, effect. Among chaotropic agents, NaSCN and LiCl reduced numbers of cells bound by 40%, but tetramethylurea had no effect. Increasing the ionic concentration of KCl reduced binding by 50 to 60%. Diluted saliva showed a concentration-dependent inhibition of B. gingivalis adherence to actinobeads. To begin examining B. gingivalis surface molecules significant to these reactions, lipopolysaccharide was extracted by the phenol–water method and analyzed by biochemical assays and polyacrylamide gel electrophoresis. Both homologous and heterologous lipopolysaccharides partially inhibited binding in a concentration-dependent manner, but actual binding of B. gingivalis lipopolysaccharide to A. viscosus cells could not be demonstrated. While heat, lipopolysaccharide, chaotropic agents, and concentrated KCl interfered to a limited extent with B. gingivalis – A. viscosus interactions on a surface mimicking teeth, the actual mechanism of cohesion is currently obscure and under investigation. The relevance of in vitro coaggregation experiments to colonization by periodontal and other pathogens was discussed.


2019 ◽  
Vol 2 (4) ◽  
pp. 91
Author(s):  
Lal Krishna

The study was aimed at identification, production and characterization of nattokinase, bacteriocin from bacterial species. Nattokinase and bacteriocins finds a wide range of applications in Pharmaceutical industry, health care and medicine. Nattokinase is a highly active fibrinolytic enzyme secreted by Bacillus subtilis and bacteriocins are proteinaceous toxins produced by Lactobacillus to inhibit the growth of closely related bacterial strains. Bacillus subtilis and Lactobacillus isolates shown positive results to microscopic, biochemical analysis.  The nattokinase and bacteriocins were produced by optimizing the media. The enzymes were purified by ammonium sulfate precipitation and HPLC. The enzyme activity for nattokinase was found at 7 mg/ml, pH 8.0 and temperature 48 ºC and the enzyme activity for bacteriocin was found at 3.9 mg/ml, pH 6.5 and temperature 30 °C. Bacteriocins from Lactobacillus showed good antagonistic activity against pathogenic bacteria. Nattokinase from Bacillus subtilis played a significant role in thrombolytic and anti-coagulation at in vitro. The results indicated that the pure enzyme has a potential in dissolving blood clot.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 935
Author(s):  
Nataliya V. Karpova ◽  
Vera V. Yaderets ◽  
Elena V. Glagoleva ◽  
Kseniya S. Petrova ◽  
Alexander I. Ovchinnikov ◽  
...  

The developing resistance of plant pathogenic fungi to commercial fungicides has become a serious problem for efficient plant disease control. The use of antifungal preparations based on living microorganisms or their metabolites represents one of the possible environmentally friendly approaches. However, since a complete rejection of chemical fungicides is impossible, the combining of biopreparations and fungicides may be considered a promising biocontrol approach. Promising strains for the development of antifungal biopreparations include Penicillium fungi producing various biologically active compounds with antimicrobial and antiviral activities. A dry biomass of the P. chrysogenum F-24-28 strain (DMP) obtained from the P. chrysogenum VKPM F-1310 strain by induced mutagenesis possessed a high antifungal efficiency. According to in vitro experiments, supplementation of agarized medium with DMP (7.5–10 g/L) resulted in a significant growth inhibition in several plant pathogenic Fusarium fungi. The combination of DMP with a commercial azoxystrobin-based fungicide resulted in a prolonged growth inhibition in F. oxysporum, F. graminearum and F. culmorum even at fungicide concentrations significantly below the recommended level (0.5–2.5 mg/L or 2.5–12.5 g/ha vs. the recommended 100–275 g/ha). These results demonstrate a possibility to develop an efficient environmentally friendly biopreparation suitable to control crop diseases caused by a wide range of plant pathogens, and to prevent a possible selection and spreading of resistant pathogen strains.


2010 ◽  
Vol 30 (19) ◽  
pp. 4656-4670 ◽  
Author(s):  
Rajarshi P. Ghosh ◽  
Rachel A. Horowitz-Scherer ◽  
Tatiana Nikitina ◽  
Luda S. Shlyakhtenko ◽  
Christopher L. Woodcock

ABSTRACT Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length. Although MeCP2 is strictly monomeric in solution, its binding to DNA is cooperative, with dimeric binding strongly correlated with methylation density, and strengthened by nearby A/T repeats. Dimeric binding is abolished in the F155S and R294X severe RTT mutants. MeCP2 also binds chromatin in vitro, resulting in compaction-related changes in nucleosome architecture that resemble the classical zigzag motif induced by histone H1 and considered important for 30-nm-fiber formation. In vivo chromatin binding kinetics and in vitro steady-state nucleosome binding of both MeCP2 and H1 provide strong evidence for competition between MeCP2 and H1 for common binding sites. This suggests that chromatin binding by MeCP2 and H1 in vivo should be viewed in the context of competitive multifactorial regulation.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 496 ◽  
Author(s):  
Charlotte Joller ◽  
Mout De Vrieze ◽  
Aboubakr Moradi ◽  
Claudine Fournier ◽  
Delphine Chinchilla ◽  
...  

(1) Background: S-methyl methanethiosulfonate (MMTS), a sulfur containing volatile organic compound produced by plants and bacterial species, has recently been described to be an efficient anti-oomycete agent with promising perspectives for the control of the devastating potato late blight disease caused by Phytophthora infestans. However, earlier work raised questions regarding the putative toxicity of this compound. To assess the suitability of MMTS for late blight control in the field, the present study thus aimed at evaluating the effect of MMTS on a wide range of non-target organisms in comparison to P. infestans. (2) Methods: To this end, we exposed P. infestans, as well as different pathogenic and non-pathogenic fungi, bacteria, the nematode Caenorhabditis elegans as well as the plant Arabidopsis thaliana to MMTS treatment and evaluated their response by means of in vitro assays. (3) Results: Our results showed that fungi (both mycelium and spores) tolerated MMTS better than the oomycete P. infestans, but that the compound nevertheless exhibited non-negligible toxic effects on bacteria, nematodes and plants. (4) Conclusions: We discuss the mode of action of MMTS and conclude that even though this compound might be too toxic for chemical application in the field, its strong anti-oomycete activity could still be exploited when naturally released at the site of infection by plant-associated microbes inoculated as biocontrol agents.


Sign in / Sign up

Export Citation Format

Share Document