scholarly journals Dynamics of Short-Term Metabolic Profiling in Radish Sprouts (Raphanus sativus L.) in Response to Nitrogen Deficiency

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 361 ◽  
Author(s):  
Seung-A Baek ◽  
Kyung-Hoan Im ◽  
Sang Un Park ◽  
Sung-Dug Oh ◽  
Jaehyuk Choi ◽  
...  

Nitrogen (N) is a macronutrient important for the survival of plants. To investigate the effects of N deficiency, a time-course metabolic profiling of radish sprouts was performed. A total of 81 metabolites—including organic acids, inorganic acid, amino acids, sugars, sugar alcohols, amines, amide, sugar phosphates, policosanols, tocopherols, phytosterols, carotenoids, chlorophylls, and glucosinolates—were characterized. Principal component analysis and heat map showed distinction between samples grown under different N conditions, as well as with time. Using PathVisio, metabolic shift in biosynthetic pathways was visualized using the metabolite data obtained for 7 days. The amino acids associated with glucosinolates accumulated as an immediate response against –N condition. The synthesis of pigments and glucosinolates was decreased, but monosaccharides and γ-tocopherol were increased as antioxidants in radish sprouts grown in –N condition. These results indicate that in radish sprouts, response to N deficiency occurred quickly and dynamically. Thus, this metabolic phenotype reveals that radish responds quickly to N deficiency by increasing the content of soluble sugars and γ-tocopherol, which acts as a defense mechanism after the germination of radish seeds.

2017 ◽  
Vol 63 (No. 10) ◽  
pp. 455-460 ◽  
Author(s):  
Pavlíková Daniela ◽  
Zemanová Veronika ◽  
Pavlík Milan

The objectives of this study were to analyse the relationship between the contents of elements and free amino acids (AAs) in fronds of As-hyperaccumulator Pteris cretica cv. Albo-lineata (PC) and non-hyperaccumulator Pteris straminea (PS) during reversible senescence. The time-course effect on senescence was also investigated. The two ferns were grown in a pot experiment with soil containing 16 mg As<sub>total</sub>/kg soil for 160 days. The contents of elements and AAs in both ferns and in individual sampling periods differed. The highest accumulation of elements and AAs was measured in PS fronds after 83 days; however, the accumulation of As, Ca, Cu, Fe, Mg, P and asparagin in PC fronds was highest after 160 days. The results of principal component analysis showed more rapid senescence of PS compared to PC. This was caused by changes in the relationship between the contents of elements (cofactors of metalloenzymes, stress metabolites) and AAs (transport of NH<sub>2</sub> group and stress metabolites). The hyperaccumulator plant (PC) was more resistant than the bioindicator plant (PS) to the conversion from reversible to irreversible senescence.


2020 ◽  
Vol 12 (1) ◽  
pp. e2629
Author(s):  
Junior Pastor Pérez-Molina ◽  
Raquel Castro Lara ◽  
Ian Portuguez Brenes ◽  
Valerie Araya Trejos ◽  
Andrey Quesada Traña

Introduction: Chlorophyll Fluorescence (Fv/Fm) detects damage in photosystem II (PSII) in plants exposed to stress (biotic and/or abiotic). Objective: In this context, Fv/Fm for the diagnosis of the effect of N deficiency and light in tomato plants (Solanum lycopersicum) was evaluated. Methods: We used the software R to analyze data from an experiment consisted of two light treatments (high and low) and two Hoagland nutritive solutions (N deficiency: (-)N; and complete solution: C). Twenty tomato plants within the two light treatments, with two nutrient levels ((-)N and C) were used. For four weeks, weekly measurements for height (H), leaf number (NL), and Fv/Fm were made. On the fourth week, the dry mass partitioning (root: RMR; stem: SMR; and leaves: LMR) and chlorophyll concentration (a, b, a/b, and total) was measured. Results: We found statistically significant differences between treatments for H, NL and Fv/Fm (KW> 14,5, g.l.= 3,76, P<0,01), but no differences for chlorophyll concentration (F<2,2; g.l.=1, 16, P>0,05). In both light conditions it was higher LMR in C treatment, but with lower RMR compared to (-)N. Statistically significant correlations (% Spearman, P<0,05) between Fv/Fm and LMR, RMR, and SMR (-76%, 69%, and 37%, respectively) were found. Conclusion: Overall, we can emphasize that the Fv/Fm is a sensitive variable to the stress caused by nitrogen and light deficiency, whose progress of stress time-course can assess. Finally, Fv/Fm proved to be an indicator of the dry mass partition of stress induced by N deficiency and could be implemented as diagnostic in breeding programs.    


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Meng Wei ◽  
Aijun Zhang ◽  
Hongmin Li ◽  
Zhonghou Tang ◽  
Xiaoguang Chen

Nitrogen (N) is an essential macronutrient limiting plant growth and quality of leaf-vegetable sweetpotato (Ipomoea batatas Lam). The objective of this study was to investigate the effects of N deficiency and re-supply on growth, physiology, and amino acids in sweetpotato. Two leaf-vegetable sweetpotato cultivars, Pushu 53 and Tainong 71, were subjected to three treatments in hydro-culture: 1) N sufficiency, 2) N deficiency, and 3) N deficiency and subsequently with N re-supply. Compared with N sufficiency, N deficiency caused a decrease in vine growth, carotenoid and chlorophyll content (Chlt), root viability, photosynthesis, and nitrate reductase (NR) activity in both cultivars, but to a great extent in Tainong 71. Whereas N deficiency increased root growth and glutamine synthetase (GS) activity in both cultivars, and the increase in ‘Tainong 71’ was more obvious. Re-supply of N recovered the vine growth, root viability, Chlt, photosynthesis, NR, and GS activity, to a greater extent for ‘Pushu 53’ than for ‘Tainong 71’. N deficiency significantly decreased essential amino acids, including lysine, phenylalanince, isoleucine, tryptophane, leucine, and valine contents and nonessential amino acids, consisting of glutamic acid, aspartic acid, glycine, argnine, and proline content in both cultivars. These results indicated that the light leaf color leafy sweetpotato ‘Tainong 71’ is sensitive to the N availability and the dark green leaf color ‘Pushu 53’ is more tolerant to low N, which appear to reflect the differential response of two cultivars to their different adaptability to N availability.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 981
Author(s):  
Miriam Gil-Monreal ◽  
Mercedes Royuela ◽  
Ana Zabalza

The inhibition of acetolactate synthase (ALS; EC 2.2.1.6), an enzyme located in the biosynthetic pathway of branched-chain amino acids, is the target site of the herbicide imazamox. One of the physiological effects triggered after ALS inhibition is the induction of aerobic ethanol fermentation. The objective of this study was to unravel if fermentation induction is related to the toxicity of the herbicide or if it is a plant defense mechanism. Pea plants were exposed to two different times of hypoxia before herbicide application in order to induce the ethanol fermentation pathway, and the physiological response after herbicide application was evaluated at the level of carbohydrates and amino acid profile. The effects of the herbicide on total soluble sugars and starch accumulation, and changes in specific amino acids (branched-chain, amide, and acidic) were attenuated if plants were subjected to hypoxia before herbicide application. These results suggest that fermentation is a plant defense mechanism that decreases the herbicidal effect.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qi Chen ◽  
Yanpeng Wang ◽  
Zhijun Zhang ◽  
Xiaomin Liu ◽  
Chao Li ◽  
...  

Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L–1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.


2010 ◽  
Vol 298 (2) ◽  
pp. F461-F470 ◽  
Author(s):  
Geum-Sook Hwang ◽  
Ji-Young Yang ◽  
Do Hyun Ryu ◽  
Tae-Hwan Kwon

Lithium (Li) treatment for bipolar affective disorders is associated with a variety of renal side effects. The metabolic response of the kidney to chronic Li treatment has rarely been studied. We applied a novel method of 1H-nuclear magnetic resonance (NMR)-based metabonomics to integrate metabolic profiling and to identify the changes in the levels of metabolites in the kidney and urine from rats with Li-induced NDI. Metabolic profiles of urine and kidney homogenate [3 different zones (cortex, outer medulla, and inner medulla) or whole kidney] were investigated using high-resolution NMR spectroscopy coupled with pattern recognition methods. The accurate concentrations of metabolites in kidney homogenates and urine were rapidly measured using the target-profiling procedure, and the difference in the levels of metabolites was compared using multivariate analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis. Major endogenous metabolites for kidney homogenates contained products of glycolysis (glucose, lactate) and amino acids, as well as organic osmolytes (e.g., betaine, myo-inositol, taurine, and glycerophosphocholine). Many metabolites revealed changes in their levels, including decreased levels of organic osmolytes and amino acids in the inner medulla. A number of urinary metabolites were changed in Li-induced NDI, and in particular, elevated urinary levels of acetate, lactate, allantoin, trimethylamine, and creatine could suggest Li-induced renal cell stress or injury. Taken together, metabonomics of kidney tissue and urine based on 1H-NMR spectroscopy could provide insight into the effects of Li-induced renal effects and cell injury.


2020 ◽  
Vol 16 (7) ◽  
pp. 831-843
Author(s):  
Yuwen Wang ◽  
Shuping Li ◽  
Liuhong Zhang ◽  
Shenglan Qi ◽  
Huida Guan ◽  
...  

Background and Objective: Kang Fu Xin liquid (KFX) is an official preparation made from the ethanol extract product from P. Americana. The present quality control method cannot control the quality of the preparation well. The aim of the present study is to establish a convenient HPLC method for multicomponents determination combined with fingerprint analysis for quality control of KFX. Methods: An HPLC-DAD method with gradient elution and detective wavelength switching program was developed to establish HPLC fingerprints of KFX, and 38 batches of KFX were compared and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA). Meanwhile, six nucleosides and three amino acids, including uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan in KFX were determined based on the HPLC fingerprints. Results: An HPLC method assisted with gradient elution and wavelength switching program was established and validated for multicomponents determination combined with fingerprint analysis of KFX. The results demonstrated that the similarity values of the KFX samples were more than 0.845. PCA indicated that peaks 4 (hypoxanthine), 7 (xanthine), 9 (tyrosine), 11, 13 and 17 might be the characteristic contributed components. The nine constituents in KFX, uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan, showed good regression (R2 > 0.9997) within test ranges and the recoveries of the method for all analytes were in the range from 96.74 to 104.24%. The limits of detections and quantifications for nine constituents in DAD were less than 0.22 and 0.43 μg•mL-1, respectively. Conclusion: The qualitative analysis of chemical fingerprints and the quantitative analysis of multiple indicators provide a powerful and rational way to control the KFX quality for pharmaceutical companies.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 388
Author(s):  
Minghua Tang ◽  
Nicholas E. Weaver ◽  
Lillian M. Berman ◽  
Laura D. Brown ◽  
Audrey E. Hendricks ◽  
...  

Background: Research is limited in evaluating the mechanisms responsible for infant growth in response to different protein-rich foods; Methods: Targeted and untargeted metabolomics analysis were conducted on serum samples collected from an infant controlled-feeding trial that participants consumed a meat- vs. dairy-based complementary diet from 5 to 12 months of age, and followed up at 24 months. Results: Isoleucine, valine, phenylalanine increased and threonine decreased over time among all participants; Although none of the individual essential amino acids had a significant impact on changes in growth Z scores from 5 to 12 months, principal component heavily weighted by BCAAs (leucine, isoleucine, valine) and phenylalanine had a positive association with changes in length-for-age Z score from 5 to 12 months. Concentrations of acylcarnitine-C4, acylcarnitine-C5 and acylcarnitine-C5:1 significantly increased over time with the dietary intervention, but none of the acylcarnitines were associated with infant growth Z scores. Quantitative trimethylamine N-oxide increased in the meat group from 5 to 12 months; Conclusions: Our findings suggest that increasing total protein intake by providing protein-rich complementary foods was associated with increased concentrations of certain essential amino acids and short-chain acyl-carnitines. The sources of protein-rich foods (e.g., meat vs. dairy) did not appear to differentially impact serum metabolites, and comprehensive mechanistic investigations are needed to identify other contributors or mediators of the diet-induced infant growth trajectories.


2021 ◽  
Vol 22 (14) ◽  
pp. 7674
Author(s):  
Ting Liang ◽  
Zhengqing Yuan ◽  
Lu Fu ◽  
Menghan Zhu ◽  
Xiaoyun Luo ◽  
...  

Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1114 ◽  
Author(s):  
Yawei Wu ◽  
Juan Xu ◽  
Yizhong He ◽  
Meiyan Shi ◽  
Xiumei Han ◽  
...  

Pitaya (Hylocereus polyrhizus) has attracted much interest from consumers as it is a novelty fruit with high nutrient content and a tolerance to drought stress. As a group of attractive pigment- and health-promoting natural compounds, betalains represent a visual feature for pitaya fruit quality. However, little information on the correlation between betalains and relevant metabolites exists so far. Currently, color (Commission International del’Eclairage, CIE) parameters, betalain contents, and untargeted metabolic profiling (gas chromatography-time-of-flight-mass spectrometry, GC–MS and liquid chromatography tandem mass spectrometry, LC–MS) have been examined on ‘Zihonglong’ fruits at nine different developmental stages, and the variation character of the metabolite contents was simultaneously investigated between peel and pulp. Furthermore, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used to explore metabolite profiles from the fruit samples. Our results demonstrated that the decrease of amino acid, accompanied by the increase of sugars and organic acid, might contribute to the formation of betalains. Notably, as one of four potential biomarker metabolites, citramalic acid might be related to betalain formation.


Sign in / Sign up

Export Citation Format

Share Document