scholarly journals Process Intensification in Bio-Ethanol Production–Recent Developments in Membrane Separation

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1028
Author(s):  
Izumi Kumakiri ◽  
Morihisa Yokota ◽  
Ryotaro Tanaka ◽  
Yu Shimada ◽  
Worapon Kiatkittipong ◽  
...  

Ethanol is considered as a renewable transport fuels and demand is expected to grow. In this work, trends related to bio-ethanol production are described using Thailand as an example. Developments on high-temperature fermentation and membrane technologies are also explained. This study focuses on the application of membranes in ethanol recovery after fermentation. A preliminary simulation was performed to compare different process configurations to concentrate 10 wt% ethanol to 99.5 wt% using membranes. In addition to the significant energy reduction achieved by replacing azeotropic distillation with membrane dehydration, employing ethanol-selective membranes can further reduce energy demand. Silicalite membrane is a type of membrane showing one of the highest ethanol-selective permeation performances reported today. A silicalite membrane was applied to separate a bio-ethanol solution produced via high-temperature fermentation followed by a single distillation. The influence of contaminants in the bio-ethanol on the membrane properties and required further developments are also discussed.

2018 ◽  
Vol 34 (2) ◽  
pp. 135-200 ◽  
Author(s):  
Frerich J. Keil

Abstract Process intensification (PI) is a rapidly growing field of research and industrial development that has already created many innovations in chemical process industry. PI is directed toward substantially smaller, cleaner, more energy-efficient technology. Furthermore, PI aims at safer and sustainable technological developments. Its tools are reduction of the number of devices (integration of several functionalities in one apparatus), improving heat and mass transfer by advanced mixing technologies and shorter diffusion pathways, miniaturization, novel energy techniques, new separation approaches, integrated optimization and control strategies. This review discusses many of the recent developments in PI. Starting from fundamental definitions, microfluidic technology, mixing, modern distillation techniques, membrane separation, continuous chromatography, and application of gravitational, electric, and magnetic fields will be described.


Fuels ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 533-545
Author(s):  
Izumi Kumakiri ◽  
Yusuke Maruo ◽  
Ryotaro Kishibe ◽  
Masayuki Murata ◽  
Tomoyuki Kosaka ◽  
...  

The combination of high-temperature fermentation and membrane separation has the potential to realize a simple on-site process to produce concentrated bioethanol. The performance of dehydration membranes in separating bioethanol was investigated in this study. Three types of zeolite membranes, LTA, MFI, and MOR, were synthesized. Their dehydration ability was compared using a bioethanol solution produced by high-temperature fermentation followed by vacuum distillation. The LTA zeolite membranes deformed and became amorphous while treating the distillate. On the contrary, no significant changes were observed in the MFI and MOR zeolite membranes analyzed by X-ray diffraction after treating the distillate. However, the flux declined when the membranes were in contact with the distillate (pH = 3.8). Neutralizing the distillate to pH 6.6 with sodium hydroxide did not prevent the flux decline. Even though flux decreased by about 20–30%, the MOR membrane showed quite high water-selectivity, with a water concentration of over 99.9% in the permeate, suggesting the feasibility of its application to concentrate bioethanol.


2021 ◽  
Vol 22 (11) ◽  
pp. 5628
Author(s):  
Valquíria Campos Alencar ◽  
Juliana de Fátima dos Santos Silva ◽  
Renata Ozelami Vilas Boas ◽  
Vinícius Manganaro Farnézio ◽  
Yara N. L. F. de Maria ◽  
...  

Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N2 fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N2 fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.


Author(s):  
I. G. Wenten ◽  
K. Khoiruddin ◽  
R. R. Mukti ◽  
W. Rahmah ◽  
Z. Wang ◽  
...  

Coupling chemical reaction with membrane separation or known as membrane reactor (MR) has been demonstrated by numerous studies and showed that this strategy has successfully addressed the goal of process intensification.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Pietro Sica ◽  
Laysa Maciel Lewandowski Meira Prado ◽  
Pedro Granja ◽  
Elias Miguel de Carvalho ◽  
Eduardo de Castro Mattos ◽  
...  

Despite being considered renewable, corn (Zea mays) ethanol still generates much debate over the use of fossil fuels in its production and is considered less sustainable than sugarcane (Saccharum spp.) ethanol. In Brazil, corn ethanol is starting to be produced in the Center-West and is expected to increase with the RenovaBio, a promising policy for biofuels adoption. In this context, energy cane (Saccharum spp.) is a biomass crop with high yields that can provide bagasse to supply the energy demand of the corn ethanol industry and provide juice with about 10% sugar content. However, the effects of introducing its juice in the production process are unknown. For these reasons, the objective of this study was to assess the effects of adding energy cane juice in corn ethanol production. Energy cane juice brings several advantages: (i) It provides sugars that can reduce by almost 50% the amount of corn and enzymes used, (ii) reduces the amount of water needed for ethanol production, and (iii) increases significantly the fermentation efficiency from 86.4% to 90.8% by providing minerals that support yeast growth. Therefore, energy cane can be integrated into the corn ethanol production process, making the fermentation more efficient and the production systems more sustainable.


2000 ◽  
Vol 53 (6) ◽  
pp. 147-174 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.


2016 ◽  
Vol 855 ◽  
pp. 78-93 ◽  
Author(s):  
Pradeepan Periyat ◽  
Binu Naufal ◽  
Sanjay Gopal Ullattil

This review focuses on the recent developments of high temperature stable anatase TiO2 photocatalyst. Eventhough TiO2 exists in different forms anatase, rutile and brookite, anatase phase stabilization is often the key to obtain the highest photocatalytic performance for TiO2, particularly for the use as an antibacterial and self-cleaning coatings in high temperature processed ceramics. Different methods available for the anatase stabilization in literature are critically reviewed and emphasis is placed on relatively recent developments. Currently available methods of anatase stabilizations are classified in to four categories viz (i) doping with metal ions (ii) doping with non-metal ions (iii) co-doping with metal and non-metal ions and (iv) dopant free stabilization by oxygen richness. Further to this, the application of these high temperature stabilized anatase TiO2 photocatalyst on various ceramics substrates such as tile, glass and sanitary wares as self-cleaning and antibacterial coatings are also been briefly discussed.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 364
Author(s):  
Hao Wang ◽  
Jun Xiao ◽  
Hui Wang ◽  
Yong Chen ◽  
Xing Yin ◽  
...  

Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV nuclear system. This review discussed current research on the corrosion resistance of structural materials (such as EP823, T91, ODS, and authentic steels) in high-temperature liquid metal served as reactor coolants. The current corrosion resistance evaluation has proved that even for the excellent performance of EP823, the structural material selected in pressurized water reactor is not the ideal material for operation in the high-temperature lead-bismuth eutectic (LBE). Furthermore, the latest coating technologies that are expected to be applied to cladding materials for coolant system were extensively discussed, including Al-containing coatings, ceramic coatings, oxide coatings, amorphous coatings and high-entropy alloy coatings. The detailed comparison summarized the corrosion morphology and corrosion products of various coatings in LBE. This review not only provided a systematic understanding of the corrosion phenomena, but also demonstrated that coating technology is an effective method to solve the corrosion issues of the advanced next-generation reactors.


Author(s):  
Shakir Shakoor Khatti ◽  
Sheldon Jeter ◽  
Hany Al-Ansary

Abstract Due to increasing energy demand around the globe and potential environmental impacts of fossil fuels, it has become a crucial task for researchers to find alternatives to generate electricity from low-carbon resources at lower costs. Three types of advanced CSP are under consideration: systems heating salt, gas, or particulate. Particle heating receiver (PHR) based central receiver power tower CSP is an emerging technology that promises higher operating temperatures and more cost-effective thermal energy storage (TES) than feasible with existing or alternative CSP systems. For reasons stated above and others, we propose that the particle heating receiver (PHR) based CSP in the classic central receiver power tower (CRPT) configuration will be the most suitable especially in the promising Middle East and North Africa (MENA) region. Specifically, Duba, Al Wajih, and Wa’ad Al-Shamaal regions in Saudi Arabia have high direct normal irradiation (DNI) and represent potential locations. PHR based CSP power tower plant consists of a central receiver power tower with TES and cavity receiver, heliost at field, a high-temperature solar gas turbine with built-in fuel backup to operate in hybrid mode (using both fuel and solar-thermal resources). This study focuses on the optimization of a solar heat supply system (SHSS), consisting of a tower, cavity receiver, and heliostat field. SolarPILOT – Solar Power tower Integrated Layout and Optimization Tool is a field layout optimization tool developed by National Renewable Energy Laboratory (NREL). SolarPILOT is used in this study to generate the field layout of a 1.3 MWe power plant with a solar multiple (SM) of 2, 3, and 4. Cost models for the tower, receiver, and heliostats are developed using the data from research programs, contractors, manufacturing companies, and general cost engineering data and tools. System Advisor Model (SAM) is further used to simulate the annual performance of CSP tower plant including power block (high-temperature gas turbine) and TES using optical efficiency data from SolarPILOT to optimize PHR-based CSP tower plant. The results of this research are fundamental to the techno-economic analysis (TEA) of this and similar smaller-scale systems and will support the TEA of larger grid-connected and smaller off-grid systems operating independently or in conjunction with PV systems.


Sign in / Sign up

Export Citation Format

Share Document