scholarly journals Monitor Kualitas Udara Berbasis Web Menggunakan Raspberry Pi dan Modul Wemos D1

Jurnal Teknik ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 35-44
Author(s):  
Frenki Tahir ◽  
Wrastawa Ridwan ◽  
Iskandar Zulkarnain Nasibu

Air pollutant is a physical, chemical, and biological substance that can endanger the health and can cause disease in living beings. Therefore, knowledge about air quality is very important. This research aims to implement a wireless sensor network for monitoring air quality, from three different location points which are presented in the form of a website. The communication used between the client and server is the Webscoket.io communication protocol, to reduce network latency. In addition, the communication protocol works in real-time because not only the client can send a request to the server, but also can receive a response without having to send a request first. The research method used is the experimental method, which is divided into two stages namely hardware design stage and server software, microcontroller and user client design stage. The results obtained are prototyping tools used to implement wireless sensor networks for monitoring air quality using Raspberry Pi as a server and Arduino ESP-8266 as a microcontroller module. The tools have performed well as intended. In the trial, a reading of gas (CO2 and CO) sensors, temperature and humidity at the location being tested were successfully displayed on the website.

2020 ◽  
Vol 8 (6) ◽  
pp. 5652-5656

Theoretical energy recognition in remote sensor systems has received intense research interest in the late years. Radio variation, channel distortion, and blockage bring great strength and responsiveness to packets broadcast over a remote channel. A twin innovation is effective communication that can drastically increase the channel range and reduce transmission vigor consumption in disrupting channel. Growth in the direct range brings with it a reduced fault rate. In this paper, an acceptable correspondence method is proposed for each tab with active sending and receiving clusters. It consists of two stages, the precise routing phase, the selective and transmitting stage. In the routing phase, the basic route between the source and the sink hub is started. In the second stage, centers of fundamental development toward flattering team leaders select additional touch centers with minimal biomass costs from their surroundings, and then spread from bundle to cluster to the recently established endurance cluster. Reductions in error rate and regeneration are proven by the fact that malpractice funds become long-term obligation systems.


Theoretical Energy imperative in remote sensor systems has gotten an expanding research enthusiasm for late years. Radio abnormality, channel blurring and obstruction brings about bigger vitality utilization and inertness for packets transmission over remote channel. One late innovation that can possibly drastically increment the channel limit and lessen transmission vitality utilization in blurring channels is helpful correspondence. The expansion in the direct limit brings about diminished blunder rate. In this paper, one agreeable correspondence method is proposed by developing vitality effective sending and getting bunches for each jump. It comprises of two stages to be specific routing stage, selecting and-transmitting stage. In the routing stage, the underlying way between the source and the sink hubs is found. In the second stage, the hubs on the underlying way progress toward becoming group heads, which select extra contiguous hubs with most minimal vitality cost from their neighborhood then the bundle is transmitted from the sending bunch to the recently settled accepting bunch. The recreation comes about demonstrate that the decrease in mistake rate and the vitality funds convert into expanded lifetime of helpful systems.


2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
María Fernández-Amado ◽  
Paula Costa-Tomé ◽  
Nuria Gallego-Fernández ◽  
...  

Due to the exponential growth of the SARS-CoV-2 pandemic in Spain (2020), the Spanish Government adopted lockdown measures as mitigating strategies to reduce the spread of the pandemic from 14 March. In this paper, we report the results of the change in air quality at two Atlantic Coastal European cities (Northwest Spain) during five lockdown weeks. The temporal evolution of gaseous (nitrogen oxides, comprising NOx, NO, and NO2; sulfur dioxide, SO2; carbon monoxide, CO; and ozone, O3) and particulate matter (PM10; PM2.5; and equivalent black carbon, eBC) pollutants were recorded before (7 February to 13 March 2020) and during the first five lockdown weeks (14 March to 20 April 2020) at seven air quality monitoring stations (urban background, traffic, and industrial) in the cities of A Coruña and Vigo. The influences of the backward trajectories and meteorological parameters on air pollutant concentrations were considered during the studied period. The temporal trends indicate that the concentrations of almost all species steadily decreased during the lockdown period with statistical significance, with respect to the pre-lockdown period. In this context, great reductions were observed for pollutants related mainly to fossil fuel combustion, road traffic, and shipping emissions (−38 to −78% for NO, −22 to −69% for NO2, −26 to −75% for NOx, −3 to −77% for SO2, −21% for CO, −25 to −49% for PM10, −10 to −38% for PM2.5, and −29 to −51% for eBC). Conversely, O3 concentrations increased from +5 to +16%. Finally, pollutant concentration data for 14 March to 20 April of 2020 were compared with those of the previous two years. The results show that the overall air pollutants levels were higher during 2018–2019 than during the lockdown period.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


2021 ◽  
Vol 13 (4) ◽  
pp. 2389
Author(s):  
Jung-Shun Chen

The indoor air of a hospital is always full of bacteria and viruses due to patients with different diseases. These bacteria and viruses could be highly infectious to the people in the hospital irrespective of their health conditions, and could be hazardous to the patients, their care takers, and hospital staff. Thus, keeping a good hospital air quality is very essential to the operation of the hospital. This study aims at enhancing ventilation of the interior lighting of hospitals with germicidal capabilities. Air disinfection is accomplished by adding the specially designed disinfecting filters and fans to existing embedded lamps in the hospitals. The embedded lamp has a square shape of 601 mm in width and 112 mm in thickness. In the design stage, the air flow inside the embedded lamp with the added filters and fans was investigated by numerical simulation using a computational fluid dynamics (CFD) tool. Three designs, referred to as Types 1, 2, and 3, were evaluated using steady-state CFD flow simulations. The ventilation rate of the Type 1 design was about 251.9 CMH, and 348.3 CMH for the Type 2 design by increasing the fan outlet area. However, even though the ventilation was increased by 34%, the flow field of the Type 2 design was not uniform, resulting in flows being circulated around the side locations. Thus, the Type 3 design further treats this aspect by streamlining the outlet geometry and adding flow guiding vanes to reduce flow resistance and flow unsteadiness; the corresponding air ventilation rate reached 376.3 CMH. Hence, the Type 3 design was fabricated and tested. The test results confirm that the design not only has a higher ventilation rate but also operates under a smaller pressure drop, thus accomplishing the goal of providing good air quality in the hospital environment efficiently. Moreover, the associated flow noise is reduced by about 8 dBA. Hence, both an increase in the air ventilation rate and a reduction of noise are achieved simultaneously by the present method.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2013 ◽  
Vol 427-429 ◽  
pp. 1268-1271
Author(s):  
Xue Wen He ◽  
Ying Fei Sheng ◽  
Kuan Gang Fan ◽  
Le Ping Zheng ◽  
Qing Mei Cao

In view of the existing flaws of traditional manual observations, a new type of tailing reservoir safety monitoring and warning system based on ZigBee and LabVIEW was designed. The system chose SoC chip CC2530 as the RF transceiver and designed the low-power wireless sensor networks nodes to collect and process the data of tailing reservoir. It chose ZigBee 2007 as the network communication protocol, and uploaded the data to PC by RS232 serial port. The monitoring and warning interface of PC was completed with LabVIEW. The testing results show that the data transmission of the network is stable and the system is suitable for real-time monitoring and warning of the tungsten tailing reservoir.


2013 ◽  
Vol 380-384 ◽  
pp. 635-638
Author(s):  
Chen Chen

With advance of our human beings science and technology and enhance of the living standards, more and more people have addressed higher requirements on the environmental conditions in a hospital, therefore, the traditional and no-intelligent monitoring devices are being replaced by the automated and networked monitoring systems gradually. In this case, application of the wireless sensor network just fits this need. This paper proposes the Tianjin First Central Hospital indoor environment monitoring & control system of distributed acquisition and execution, and centralized management by focusing on the needs for the technical indicators of the hospital indoor environment. During design of the system, an universal design concept was put forward, and also a non-standard communication protocol for the wireless sensor network designed independently in combination with the OSI open standard. In this paper, realization of the communication protocol among the nodes with embedded software and the operation mechanism of the modes themselves are discussed, also a console panel has been developed for the data center. Several software design algorithms are proposed with respect to the network layout. This paper also describes the test platform of the Tianjin First Central Hospital indoor environment monitoring & control system established with the network components designed, and provides the test and verification results, including the monitored data of the various gases, corresponding automatic control functions, and underlay BER analysis. The results show that this system can basically realize automatic monitoring on the Tianjin First Central Hospital indoor environment. At present, the sensitive gases include CO, CO2, O2, NH3 and formaldehyde, sensitive environments temperature, humidity and light intensity, and controlled targets ventilation and lighting. This paper offers an optional solution for environment monitoring and has certain theoretical value and engineering significance.


Sign in / Sign up

Export Citation Format

Share Document