IoT Setup for Co-measurement of Water Level and Temperature

2017 ◽  
Vol 4 (3) ◽  
pp. 33-54 ◽  
Author(s):  
Sujaya Das Gupta ◽  
M.S. Zambare ◽  
A.D. Shaligram

Recent time has witnessed severe scarcity of water owing to deficient rainfall in India. The current climatic conditions in the country, project the rise in temperature and arid conditions contributing substantially towards the evaporation losses. In order to deal with the looming crisis, it is peremptory to minimize evaporation losses in the water bodies, at least measure them to get a fair idea and initiate corrective measures. This paper aims to develop a system for continuous monitoring of the water level as an indicator to the evaporation process. The system also indicates temperature of the water which influences the evaporation rate.

Author(s):  
Sujaya Das Gupta ◽  
M.S. Zambare ◽  
A.D. Shaligram

Recent time has witnessed severe scarcity of water owing to deficient rainfall in India. The current climatic conditions in the country, project the rise in temperature and arid conditions contributing substantially towards the evaporation losses. In order to deal with the looming crisis, it is peremptory to minimize evaporation losses in the water bodies, at least measure them to get a fair idea and initiate corrective measures. This paper aims to develop a system for continuous monitoring of the water level as an indicator to the evaporation process. The system also indicates temperature of the water which influences the evaporation rate.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Elke Richert ◽  
Roland Achtziger ◽  
Zygmunt Dajdok ◽  
André Günther ◽  
Hermann Heilmeier ◽  
...  

<p>The moss grass <em>Coleanthus subtilis</em> (Tratt.) Seidl is a rare, diminutive grass which grows on wet muddy bottoms of drained water bodies displaying a high degree of water level dynamics, such as fishponds or water reservoirs. Due to the temporal character of its habitat, <em>C. subtilis</em> has a very short life cycle of only a few weeks. Therefore, the species and its habitats are legally protected on both national and international levels. This paper focuses on habitats and the conservation of <em>C. subtilis</em> in Central and Western Europe.</p><p>For the period of 2000–2013, the Czech Republic with more than 200 sites represents the main distribution area of this species in Central and Western Europe. During the same period, <em>C. subtilis</em> was recorded from 45 sites in three regions of Germany (33 Lusatia, 11 Ore Mountains, 1 Mid-Elbe River), 16 sites in France, 13 sites in Poland, and four sites in Austria. Since 2000, the number of records within these seven regions seems to have followed different trends: whereas two regions (Lusatia, Germany and southern Poland) became newly colonized and many populations established, in one region (Ore Mountains, Germany) the number of records diminished. Owing to its specific life cycle, both reproduction success and maintenance of <em>C. subtilis</em> populations are closely linked to the prevailing water level regime, mainly dependent on the management of the water body. Management for the conservation of <em>C. subtilis</em> populations should consider the entire complex of water bodies, as well as individual ponds. For the preservation of the species, at least one pond in each complex should be drained every year and each pond should be drained at least once within 5 years. Depending on local climatic conditions, ponds should be drained for 8–10 weeks during the time period from mid-March to mid-November.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Nicolás Verdugo-Vásquez ◽  
Gastón Gutiérrez-Gamboa ◽  
Emilio Villalobos-Soublett ◽  
Andrés Zurita-Silva

In the 90s, as in other countries, transformation of Chilean viticulture brought about the introduction and spread of European grapevine varieties which has resulted in a massive loss of minor local and autochthonous grapevine varieties traditionally grown in several wine growing regions. Fortunately, in recent years, autochthonous and minority varieties have been revalued due to their high tolerance to pests and diseases and because of their adaptation to thermal and water stress triggered by global warming. In this study, we assessed the nutritional status of two autochthonous grapevines grafted onto four different rootstocks under the hyper-arid climatic conditions of Northern Chile over three consecutive seasons. The results showed that R32 rootstock induced high N, P, Ca, Mg and Mn levels in blades compared to Harmony rootstock. R32 rootstock and to a lesser extent, 1103 Paulsen and 140 Ruggeri rootstocks kept balanced levels of nutrients in blades collected from Moscatel Amarilla and Moscatel Negra grapevine varieties. Additionally, Harmony presented slight nutritional imbalance compared to the rest of studied rootstocks due to its low absorption of Mg, Mn, Ca and P, and its high K absorption, which was exacerbated under warm weather and salinity soil conditions. These results may provide a basis for specific cultivar/rootstock/site combinations, a nutritional guide for the viticulturists of Northern Chile, and options to diversify their production favoring the use of minority and autochthonous varieties that adapt well to hyper-arid conditions of Northern Chile.


1951 ◽  
Vol 41 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
H. H. Nicholson ◽  
G. Alderman ◽  
D. H. Firth

1. The methods of investigation of the effect of ground water-level on crop growth, together with tho field installations in use, are discussed.2. Direct field experiments are handicapped by the difficulties of achieving close control on a sufficiently large scale, due to considerable variations of surface level and depth of peat within individual fields and to rapid fluctuations in rainfall and evaporation. Many recorded experiments are associated with climatic conditions of substantial precipitation during the growing season.3. Seasonal fluctuations of ground water-level in Fen peat soils in England, in natural and agricultural conditions, are described.4. The local soil conditions are outlined and the implications of profile variations are discussed.5. The effective control of ground water-level on a field scale requires deep and commodious ditches and frequent large underdrains to ensure the movement of water underground with sufficient freedom to give rapid compensatory adjustment for marked disturbances of ground water-level following the incidence of heavy rain or excessive evaporation.6. A working installation for a field experiment in ordinary farming conditions is described and the measure of control attained is indicated.


2019 ◽  
pp. 25-30
Author(s):  
Valentina Aleksandrovna Fedorova ◽  
Nina Alekseevna Naumova ◽  
Ekaterina Vasylyevna Yachmeneva ◽  
Yulia Pavlovna Tarasenkova

Objects of research were: spring wheat Saratovskaya 70-st, Cardinal, 3 Curenta, Madam, Nil avocet yr7's, Angarida; spring barley Ratnik-st, Medium 135, grace, Vakula, Brassa; spring oats Showjumping-st, Leo, Bulan, Kuranin. As a result of the study of these varieties of spring crops, the most adapted to local soil and climatic conditions samples were identified. The selected samples were distinguished by high biological plasticity, growth and development rates, maximum use of moisture, as well as the ability to form high grain yields.


2020 ◽  
Vol 8 (6) ◽  
pp. 2509-2512

Catchments are most important for the purpose of practicing irrigation and recharging groundwater by collecting water during the rainy season so that the nearby land will be in surplus quantity of groundwater due to the continues percolation of water from the catchments, even the stored water in the form of catchments will be used as an alternative water source for other requirements apart from the irrigation practices such as for industries and other developmental activities taking place nearby the catchments. Year by year it was noticed that in the world scenario the pollutant concentration is keep on increasing especially water and air pollution due to the excessive load of population that is increasing from the rural to urban areas [10]. Coming to water pollution the major portion of pollution is increasing in the surface water bodies [4] due to various activities like surface runoff, intentionally releasing of untreated effluents from the nearby industries into the catchments [8] and the agricultural runoff etc, whatever the reason there is an immediate need and an emergency to monitor these catchments as the average rainfall is gradually decreasing due to the changing climatic conditions like global warming which leads to the reduced availability of water in the surface water bodies at the other side the existing water is being contaminated [5] by the activities of nearby people. The impact will be severe when the same situation continues in the days to come where the living standards of the people will be decreased at a notable level and the impact will be much more severe on the irrigated land which depends on the catchments. The study has done at Kolleru Lake in west godavari district, Andhra Pradesh. Collected Six Water samples from six locations around the lake for analysis [7] and then the results of the analysis compared with Central Pollution Control Board 1979and Indian standards 1982 guidelines for water in the surface water bodies to find out the present scenario of lake water.


Author(s):  
Elhoucine Essefi ◽  
Mohamed Ali Tagorti

Abstract This work aimed to study the formation of salt through a progressive evaporation of sebkha El Melah brine. The precipitated salt in the case of sebkha El Melah is variable along the progressive evaporation. Weights of salt after each phase of precipitation indicate a heterogeneous evaporation process cumulating at 315 g L−1. With an increasing evaporation of El Melah brine, the number of precipitated mineral species increased. The cumulative number of species along the evaporation process reached 20, including principally: Halite (NaCl) (73–95%), epsomite (MgSO4·7H2O) (7–14%), bischofite (MgCl2:6H2O) (1%), Kieserite Mg(SO4)(H2O) (0–2%), magnesite (MgCO3) (1–4%), polyhalite (K2Ca2Mg(SO4)4,2H2O). Also, the thermodynamic theoretical modeling of the El Melah brine shows convergence with geochemical and mineralogical experimental data. At an evaporation rate of 60%, the sebkha of El Melah annually provides with 315,000 tons of salt. The majority of salt (80%) is halite. The remaining 20% contains different species having a huge economic interest. From an industrial viewpoint, our study shows that the purity of halite is guaranteed at low rates of evaporation. Evaporation between 50 and 75% produces a mixture dominated by halite. Evaporation higher than 75% needs further studies to find the mineralogical composition and the phase of each mineral precipitation. The saline system of El Melah represents a geoeconomic interest due to the cheap natural process of production, its large quantity of halite with varieties of other accessory minerals, and cheap procedure of exportation.


2021 ◽  
Vol 321 ◽  
pp. 01017
Author(s):  
Aiqiang Chen ◽  
Jinghong Yin ◽  
Huiqin Wang ◽  
Bin Liu ◽  
Rachid Bennacer

The change of evaporation liquid on another immiscible liquid has important guiding significance for many applications. In this experiment, the geometric temperature distribution and evaporation rate of n-hexane droplets were observed and recorded by changing the temperature of deionized water. The results show that with the increase of temperature of deionized water-based solution, the maximum diameter of n-hexane droplet spreading after titration increases gradually, while the minimum diameter of n-hexane droplet disappearing decreases gradually. Meanwhile, the evaporation rate of n-hexane droplet is constant during the whole evaporation process. It should also be mentioned that if the base solution is changed from deionized water to a certain concentration of salt solution, the maximum diameter of n-hexane droplet spreading will be reduced, and the evaporation intensity will be relatively reduced. These experimental results will give us a better understanding of the mechanism and characteristics of droplet evaporation.


2013 ◽  
Vol 864-867 ◽  
pp. 239-242
Author(s):  
Wen Juan Ding ◽  
Hua Yong Zhang ◽  
Fang Juan Zhang

This study examined the effects of submergence and nitrogen concentration on biomass allocation and nutrients utilization of an invasive plant Alternanthera philoxeroides. In the experiment, A. philoxeroides was applied to two water level treatments (0 and 25cm above the surface) across with two nitrogen concentrations (0 and 10 mg/l N). The results showed that submergence decreased leaf fraction and increased stem fraction, but high N changed this situation. In submergence, high N increased leaf fraction but decreased stem fraction due to leaves survival and maintenance. Submergence decreased root fraction and the content of soluble sugar in stem. The results suggested that high N concentration could counteract the negative effects of submergence. Therefore, the risk of A. philoxeroides invasion might be enhanced by nitrogen pollution in fluctuating water bodies, and should be attention intensely.


Sign in / Sign up

Export Citation Format

Share Document