Doping of Diamond Crystals with a Dopant of P3N5

2012 ◽  
Vol 217-219 ◽  
pp. 96-100
Author(s):  
You Jin Zheng

In this paper, a new dopant of P3N5 (phosphorus nitride) was doped into the diamond growth cell to grow diamond crystals by temperature gradient growth method (TGM) under high pressure and high temperature (HPHT). The experiments were performed at a fixed pressure of about 6.0 GPa and temperatures of 1600-1650 K. The gained diamond crystals were characterized by infrared (IR) absorption spectroscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. IR measurements demonstrated that, nitrogen atom was indeed doped into diamond crystals, and the diamond crystals with perfect shape containing nitrogen concentration ranging from 461 atomic parts per million (ppm) to 2186 atomic ppm were successfully synthesized. Nitrogen atoms present in diamond crystal were predominantly in isolated form accompanied by a small amount of nitrogen pairs. Micro-Raman spectra implied that crystalline quality deteriorated with nitrogen concentration gradually increased in diamond-growing environment. The XPS spectra revealed that only a few of phosphorus impurities about tens of ppm level were incorporated into a diamond crystal which was heavily doped with P3N5. This study will promote the application of doping diamonds in micro-electronics field and other fields.

2015 ◽  
Vol 1734 ◽  
Author(s):  
Samuel L. Moore ◽  
Yogesh K. Vohra

ABSTRACTChemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. Altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.


1988 ◽  
Vol 128 ◽  
Author(s):  
Takashi Tagami ◽  
Keiji Oyoshi ◽  
Shuhei Tanaka

ABSTRACTThe surface chemistry of silica glass implanted with N+ or P+ ions has been studied. The X-ray photoelectron spectroscopy (XPS) spectra of N(1s) for silica glass implanted with N+ shows the possibility of the formation of oxynitride glass. For the first time, the effect of the implantation of N+ and additional Si+ on the surface chemistry of silica glass has been studied and found to be significant in increasing the nitrogen concentration in the silica glass. The peak concentration of N increases several times, and does not change even if the sample is annealed at 900°C. The XPS spectra of P(2p) for silica glass implanted with P+ ions shows two interactions, both P-O and P-P. Therefore, the XPS spectra shows the possibility for the formation of phosphosilicate glass using P+ implantation into silica glass.


1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Tong ◽  
G. R. Berdiyorov ◽  
A. Sinopoli ◽  
M. E. Madjet ◽  
V. A. Esaulov ◽  
...  

AbstractThe stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.


1994 ◽  
Vol 346 ◽  
Author(s):  
R.J.P. Corriu ◽  
D. Leclercq ◽  
P.H. Mutin ◽  
A. Vioux

ABSTRACTTwo silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.


2005 ◽  
Vol 13 (8) ◽  
pp. 839-846 ◽  
Author(s):  
Li-Ping Wang ◽  
Yun-Pu Wang ◽  
Fa-Ai Zhang

A new type of nano-composite film was prepared from polyvinyl alcohol, Ni2+-montmorillonite (Ni2+-MMT), defoamer, a levelling agent and a plasticizer. Its thermal characteristics were studied by Differential Scanning Calorimetry (DSC). The intermolecular interactions were measured by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the tensile strength (TS) and elongation at break (%E) were measured. The microstructures were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). FT-IR and XPS spectra indicated that cross-linking has taken place between PVA and Ni2+-MMT. XRD and AFM indicate that the PVA molecules had inserted themselves into the silicate layers of MMT, exfoliating them and dispersing them randomly into the PVA matrix. Compared to pure PVA film, the TS of the films was increased and %E decreased when the Ni2+-Montmorillonite was added and the dissolution temperature of the film was also reduced.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5481
Author(s):  
Marcin Sikora ◽  
Anna Bajorek ◽  
Artur Chrobak ◽  
Józef Deniszczyk ◽  
Grzegorz Ziółkowski ◽  
...  

We report on the comprehensive experimental and theoretical studies of magnetic and electronic structural properties of the Gd0.4Tb0.6Co2 compound crystallization in the cubic Laves phase (C15). We present new results and compare them to those reported earlier. The magnetic study was completed with electronic structure investigations. Based on magnetic isotherms, magnetic entropy change (ΔSM) was determined for many values of the magnetic field change (Δμ0H), which varied from 0.1 to 7 T. In each case, the ΔSM had a maximum around room temperature. The analysis of Arrott plots supplemented by a study of temperature dependency of Landau coefficients revealed that the compound undergoes a magnetic phase transition of the second type. From the M(T) dependency, the exchange integrals between rare-earth R-R (JRR), R-Co (JRCo), and Co-Co (JCoCo) atoms were evaluated within the mean-field theory approach. The electronic structure was determined using the X-ray photoelectron spectroscopy (XPS) method as well as by calculations using the density functional theory (DFT) based Full Potential Linearized Augmented Plane Waves (FP-LAPW) method. The comparison of results of ab initio calculations with the experimental data indicates that near TC the XPS spectrum collects excitations of electrons from Co3d states with different values of exchange splitting. The values of the magnetic moment on Co atoms determined from magnetic measurements, estimated from the XPS spectra, and results from ab initio calculations are quantitatively consistent.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
D. Mayer ◽  
F. Lever ◽  
D. Picconi ◽  
J. Metje ◽  
S. Alisauskas ◽  
...  

AbstractThe conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jiyong Wei ◽  
Baibiao Huang ◽  
Peng Wang ◽  
Zeyan Wang ◽  
Xiaoyan Qin ◽  
...  

Undoped and nitrogen-doped Bi12TiO20materials were synthesized by urea addition sol-gel method. By adding urea, undoped, and N-doped gel-type precursors were synthesized by low-temperature dehydrolyzation. Nitrogen-doped and undoped nanocrystalline Bi12TiO20were prepared by annealing at 600∘C for 30 minutes. From UV-Vis absorption and diffuse reflection spectrum, the absorbing band shifted from 420 to 500 nm by nitrogen doping. The bonds of Ti–N and N–O were identified by XPS spectra from the prepared materials, and the enhancement of visible light absorption was attributed to nitrogen's substitution of oxygen. Photocatalytic properties of prepared materials were characterized by the decomposition of Rhodamine B illuminated by whole spectra of 300 W Xe light. The photocatalystBi12TiO20−yNy(y=0.03) with N/(N+O) mole ratio about 3% shows better performance than that of heavily dopedBi12TiO20−zNz(z=0.06), undoped Bi12TiO20, and light-dopedBi12TiO20−xNx(x=0.01) photocatalysts due to its better crystalline morphology.


Sign in / Sign up

Export Citation Format

Share Document