Design and Analysis of CMOS Linear Feedback Shift Registers for Low Power Application

2016 ◽  
Vol 833 ◽  
pp. 111-118 ◽  
Author(s):  
Hasrul Nisham bin Rosly ◽  
Mamun bin Ibne Reaz ◽  
Noorfazila Kamal ◽  
Fazida Hanim Hashim

Chip manufacturing technologies have been a key to the growth in all electronics devices over the past decade, bringing added convenience and accessibility through advantages in cost, size, and power consumption. Using recent CMOS technology, LFSR is implemented until layout level which develops low power application. One of the most frequent uses of a LFSR inside a FPGA is as a counter. Using a LFSR instead of a binary counter can increase the clock rate considerably due to the low routing resource required to produce the next state logic. This paper explores the LFSR using different architecture in a 0.18μm CMOS technology. There are 3 type architecture implemented into LFSR which is NAND gates, pass transistor and transmission gates. Those LFSR are compare in term of CMOS layout, hardware implementation and power consumption using Mentor Graphics tools. Thus, it provides analysis of LFSR for low power application in CMOS VLSI.

Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


Author(s):  
GOPALA KRISHNA.M ◽  
UMA SANKAR.CH ◽  
NEELIMA. S ◽  
KOTESWARA RAO.P

In this paper, presents circuit design of a low-power delay buffer. The proposed delay buffer uses several new techniques to reduce its power consumption. Since delay buffers are accessed sequentially, it adopts a ring-counter addressing scheme. In the ring counter, double-edge-triggered (DET) flip-flops are utilized to reduce the operating frequency by half and the C-element gated-clock strategy is proposed. Both total transistor count and the number of clocked transistors are significantly reduced to improve power consumption and speed in the flip-flop. The number of transistors is reduced by 56%-60% and the Area-Speed-Power product is reduced by 56%-63% compared to other double edge triggered flip-flops. This design is suitable for high-speed, low-power CMOS VLSI design applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sumitra Singar ◽  
N. K. Joshi ◽  
P. K. Ghosh

Dual edge triggered (DET) techniques are most liked choice for the researchers in the field of digital VLSI design because of its high-performance and low-power consumption standard. Dual edge triggered techniques give the similar throughput at half of the clock frequency as compared to the single edge triggered (SET) techniques. Dual edge triggered techniques can reduce the 50% power consumption and increase the total system power savings. The low-power glitch-free novel dual edge triggered flip-flop (DET-FF) design is proposed in this paper. Still now, existing DET-FF designs are constructed by using either C-element circuit or 1P-2N structure or 2P-1N structure, but the proposed novel design is designed by using the combination of C-element circuit and 2P-1N structure. In this design, if any glitch affects one of the structures, then it is nullified by the other structure. To control the input loading, the two circuits are merged to share the transistors connected to the input. In the proposed design, we have used an internal dual feedback structure. The proposed design reduces the delay and power consumption and increases the speed and efficiency of the system.


2005 ◽  
Vol 17 (04) ◽  
pp. 181-185 ◽  
Author(s):  
HO-YIN LEE ◽  
CHEN-MING HSU ◽  
SHENG-CHIA HUANG ◽  
YI-WEI SHIH ◽  
CHING-HSING LUO

This paper discusses the design of micro power Sigma-delta modulator with oversampling technology. This Sigma-delta modulator design is paid special attention to its low power application of portable electronic system in digitizing biomedical signals such as Electro-cardiogram (ECG), Electroencephalogram (EEG) etc. [1]. A high performance, low power second order Sigma-delta modulator is more useful in analog signal acquisition system. Using Sigma-delta modulator can reduce the power consumption and cost in the whole system. The original biomedical signal can be reconstructed by simply applying the digital bit stream from the modulator output through a low-pass filter. The loop filter of this modulator has been implemented by using switch capacitor (SC) integrators and using simple circuitry consists of OpAmps, Comparator and DAC. In general, the resolution of modulator is about 10 bits for biomedical application. In this two order Sigma-delta modulator simulation results of the 1.8V sigma delta modulator show a 68 dB signal-to-noise-and-distortion ratio (SNDR) in 4 kHz biomedical signal bandwidth and a sampling frequency equal to 1 MHz in the 0.18 μ m CMOS technology. The power consumption is 400 μ W. It is very suitable for low power application of biomedical instrument design.


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Wong How Hwan ◽  
Vinny Lam Siu Fan ◽  
Yusmeeraz Yusof

The purpose of this research is to design a low power integrated complementary metal oxide semiconductor (CMOS) detection circuit for charge-modulated field-effect transistor (CMFET) and it is used for the detection of deoxyribonucleic acid (DNA) hybridization. With the available CMOS technology, it allows the realization of complete systems which integrate the sensing units and transducing elements in the same device. Point-of-care (POC) testing device is a device that allows anyone to operate anywhere and obtain immediate results. One of the important features of POC device is low power consumption because it is normally battery-operated. The power consumption of the proposed integrated CMOS detection circuit requires only 14.87 mW. The detection circuit will amplify the electrical signal that comes from the CMFET to a specified level in order to improve the recording characteristics of the biosensor. Self-cascode topology was used in the drain follower circuit in order to reduce the channel length modulation effect. The proposed detection circuit was designed with 0.18µm Silterra CMOS fabrication process and simulated under Cadence Simulation Tool. 


2014 ◽  
Vol 23 (02) ◽  
pp. 1450023
Author(s):  
MOHAMED O. SHAKER ◽  
MAGDY A. BAYOUMI

A novel low power clock gated successive approximation register (SAR) is proposed. The new register is based on gating the clock signal when there is no data switching activity. It operates with fewer transistors and no redundant transitions which makes it suitable for low power applications. The proposed register consisting of 8 bits has been designed up to the layout level with 1 V power supply in 90 nm CMOS technology and has been simulated using SPECTRE. Simulation results have shown that the proposed register saves up to 75% of power consumption.


2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


Sign in / Sign up

Export Citation Format

Share Document