Titanium Oxide (TiO2) Coatings Produced on Titanium by Oxygen-Plasma Immersion and Cell Behaviour on TiO2

2006 ◽  
Vol 309-311 ◽  
pp. 367-370 ◽  
Author(s):  
E.T. Uzumaki ◽  
A.R. Santos ◽  
C.S. Lambert

Plasma immersion process was investigated as a method for producing bioceramics coatings on metallic implants due to its advantages, which include the production of coatings on three-dimensional workpieces, with high density and superior adhesion. In this process, the oxygen plasma was utilized to form titanium oxide on titanium substrate. The structure, composition and surface morphology were studied using scanning electron microscopy (SEM) and X-ray diffraction. In addition a preliminary study has also been carried out, on TiO2-coated and uncoated titanium substrates, to analyse the in vitro biocompatibility (cytotoxicity evaluation and cell morphology).

2004 ◽  
Vol 845 ◽  
Author(s):  
Satoshi Hayakawa ◽  
Yongxing Liu ◽  
Kazuya Okamoto ◽  
Kanji Tsuru ◽  
Akiyoshi Osaka

ABSTRACTTitania submicron-scale rod arrays were fabricated on metallic titanium (α-Ti) surfaces by coating a layer of sodium tetraborate on titanium substrates and subsequent thermal treatment. Thin-film X-ray diffraction analysis indicated that the sodium tetraborate gave rutile (TiO2: PDF# 21-1276) submicron-scale rod arrays. The rods in the arrays are parallel to each other in the grain of metallic titanium surface. The titania submicron-scale rod arrays deposited apatite within 7 days after being soaked in a simulated body fluid, indicating that the rod arrays exhibit in vitro bioactivity.


2007 ◽  
Vol 17 (3) ◽  
pp. 553-557 ◽  
Author(s):  
Tao HU ◽  
Cheng-lin CHU ◽  
Li-hong YIN ◽  
Yao-pu PU ◽  
Yin-sheng DONG ◽  
...  

Author(s):  
Manohar D Mullassery ◽  
Noeline B Fernandez ◽  
Surya R ◽  
Diana Thomas

Objective: The scope of the present study was the preparation and characterization of a novel composite acrylamide β-cyclodextrin grafted 3-aminopropyltriethoxysilane bentonite (AMCD-g-APSB), for the controlled delivery of curcumin (CUR).Methods: AMCD-g-APSB, was synthesized by solvent-free conditions using microwave irradiation. The structure and surface morphology of the composite was established using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal analysis, etc.Results: The swelling percentage of the composite depends on both time and pH of the medium. The maximum swelling of the composite occurred at a pH of 7.4. The maximum drug encapsulation was occurring at a pH 3. About 96.5% of drug was loaded at pH 3. In vitro biocompatibility study was performed, and the result showed good biocompatibility of the composite in the concentration range 2.5–50 μg/ml.Conclusions: Drug delivery study of the composite proved that CUR could be successfully released in a controlled manner in the colon without much loses of the drug in the stomach.


2018 ◽  
Vol 32 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Ali Deniz Dalgic ◽  
Ammar Z. Alshemary ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis

In this study, novel graphene oxide–incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) – 10% silicate-doped nano-hydroxyapatite – 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 497 ◽  
Author(s):  
Moumita Ghosh ◽  
Michal Halperin-Sternfeld ◽  
Itzhak Grinberg ◽  
Lihi Adler-Abramovich

The high demand for tissue engineering scaffolds capable of inducing bone regeneration using minimally invasive techniques prompts the need for the development of new biomaterials. Herein, we investigate the ability of Alginate incorporated with the fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) peptide composite hydrogel to serve as a potential biomaterial for bone regeneration. We demonstrate that the incorporation of the self-assembling peptide, FmocFF, in sodium alginate leads to the production of a rigid, yet injectable, hydrogel without the addition of cross-linking agents. Scanning electron microscopy reveals a nanofibrous structure which mimics the natural bone extracellular matrix. The formed composite hydrogel exhibits thixotropic behavior and a high storage modulus of approximately 10 kPA, as observed in rheological measurements. The in vitro biocompatibility tests carried out with MC3T3-E1 preosteoblast cells demonstrate good cell viability and adhesion to the hydrogel fibers. This composite scaffold can induce osteogenic differentiation and facilitate calcium mineralization, as shown by Alizarin red staining, alkaline phosphatase activity and RT-PCR analysis. The high biocompatibility, excellent mechanical properties and similarity to the native extracellular matrix suggest the utilization of this hydrogel as a temporary three-dimensional cellular microenvironment promoting bone regeneration.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 626 ◽  
Author(s):  
Metka Benčina ◽  
Ita Junkar ◽  
Rok Zaplotnik ◽  
Matjaz Valant ◽  
Aleš Iglič ◽  
...  

Facile crystallization of titanium oxide (TiO2) nanotubes (NTs), synthesized by electrochemical anodization, with low pressure non-thermal oxygen plasma is reported. The influence of plasma processing conditions on TiO2 NTs crystal structure and morphology was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the first time we report the transition of amorphous TiO2 NTs to anatase and rutile crystal structures upon treatment with highly reactive oxygen plasma. This crystallization process has a strong advantage over the conventional heat treatments as it enables rapid crystallization of the surface. Thus the crystalline structure of NTs is obtained in a few seconds of treatment and it does not disrupt the NTs’ morphology. Such a crystallization approach is especially suitable for medical applications in which stable crystallized nanotubular morphology is desired. The last part of the study thus deals with in vitro biological response of whole blood to the TiO2 NTs. The results indicate that application of such surfaces for blood connecting devices is prospective, as practically no platelet adhesion or activation on crystallized TiO2 NTs surfaces was observed.


2016 ◽  
Vol 852 ◽  
pp. 1213-1219 ◽  
Author(s):  
Tian Tian ◽  
Liu Hui ◽  
Gu Ming Jun ◽  
Jin Ying

In this work, Ag-AgCl-TiO2 coating was fabricated on titanium substrates to obtain an implant material having excellent antibacterial property and bioactivity. The coating was investigated by scanning electron microscopy and X-ray diffraction. The bioactivity of coatings was examined by simulated body fluid soaking test. To verify the susceptibility of implant material surface to bacterial adhesion, S. aureus (Sau), E. coli (Eco), K. pneumoniae (Kpn), P. Aeruginosa (Pae), four types of major pathogen were chosen for in vitro antibacterial analyses. The results showed that Ag-AgCl-TiO2 coating had excellent antibacterial property and bioactivity.


2021 ◽  
Author(s):  
Amirhossein Tavangar ◽  
Bo Tan ◽  
Krishnan Venkatakrishnan

The primary objective of current tissue regeneration research is to synthesize nano-based platforms that 24 can induce guided, controlled, and rapid healing. Titanium nanotubes have been extensively considered 25 as a new biomaterial for biosensors, implants, cell growth, tissue engineering, and drug delivery systems. 26 However, cell adhesion to nanotubes is poor due to their chemical inertness, as well as the one-dimen- 27 sional structure, and surface modification is required to enhance nanotube–cell interaction. While there 28 have been a considerable number of studies on growing titanium nanotubes, synthesizing a three-dimen- 29 sional (3-D) nano-architecture which can act as a growth support platform for bone and stem cells has 30 not been reported so far. Therefore, we present a novel technique to synthesize and grow 3-D titania 31 interwoven nanofibrous structures on a titanium substrate using femtosecond laser irradiation under 32 ambient conditions. This surface architecture incorporate the functions of 3-D nano-scaled topography 33 and modified chemical properties to improve osseointegration while at the same time leaving space to 34 deliver other functional agents. The results indicate that laser pulse repetition can control the density 35 and pore size of engineered nanofibrous structures. In vitro experiments reveal that the titania nanofi- 36 brous architecture possesses excellent bioactivity and can induce rapid, uniform, and controllable 37 bone-like apatite precipitation once immersed in simulated body fluid (SBF). This approach to synthesiz- 38 ing 3-D titania nanofibrous structures suggests considerable promise for the promotion of Ti interfacial 39 properties to develop new functional biomaterials for various biomedical applications.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 180
Author(s):  
Irina Atkinson ◽  
Ana Maria Seciu-Grama ◽  
Oana Catalina Mocioiu ◽  
Ana Maria Mocioiu ◽  
Luminita Predoana ◽  
...  

In recent years, the rising number of bone diseases which affect millions of people worldwide has led to an increased demand for materials with restoring and augmentation properties that can be used in therapies for bone pathologies. In this work, PMMA- MBG composite scaffolds containing ceria (0, 1, 3 mol%) were obtained by the phase separation method. The obtained composite scaffolds were characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. UV–Vis measurement and EDX analysis confirmed the presence of cerium ions in the composite scaffolds. Evaluation of the in-vitro biocompatibility using MTT assay showed that composite scaffold containing 1 mol% of ceria presented higher viability than control cells (100%) for concentrations ranging between 5 and 50% after 96 h of incubation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10611
Author(s):  
Yuliya Y. Khrunyk ◽  
Sabrina Ehnert ◽  
Stella V. Grib ◽  
Anatoly G. Illarionov ◽  
Stepan I. Stepanov ◽  
...  

Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V.


Sign in / Sign up

Export Citation Format

Share Document