Design and Orthogonality Correction of a Planar Scanner for an Atomic Force Microscope

2006 ◽  
Vol 326-328 ◽  
pp. 401-404
Author(s):  
Dong Yeon Lee ◽  
Dae Gab Gweon

This paper shows a method of designing a nano-positioning planar scanner that can be used in a scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. Furthermore, we used a motion amplifying mechanism in the piezoelectric actuator to achieve a large travel range. We theoretically determined the travel range of the total system and verified the range by using a program based on a finite element analysis. The maximum travel range of the planar scanner was greater than 120 μm. A planar scanner of an atomic force microscope can move samples with a few nm resolutions. To get stable AFM images of small feature samples, a closed loop control could not be used due to large random errors of the sensor. The orthogonality of a new planar scanner having a motion guide is measured and corrected by using a simple electronic circuit in the open loop scanning to reduce the scanner artifact.

Author(s):  
Hung-Sung Lin ◽  
Mong-Sheng Wu

Abstract The use of a scanning probe microscope (SPM), such as a conductive atomic force microscope (C-AFM) has been widely reported as a method of failure analysis in nanometer scale science and technology [1-6]. A beam bounce technique is usually used to enable the probe head to measure extremely small movements of the cantilever as it is moved across the surface of the sample. However, the laser beam used for a beam bounce also gives rise to the photoelectric effect while we are measuring the electrical characteristics of a device, such as a pn junction. In this paper, the photocurrent for a device caused by photon illumination was quantitatively evaluated. In addition, this paper also presents an example of an application of the C-AFM as a tool for the failure analysis of trap defects by taking advantage of the photoelectric effect.


2009 ◽  
Vol 17 (2) ◽  
pp. 30-33
Author(s):  
Jason Haaheim ◽  
Omkar A. Nafday

Dip Pen Nanolithography (DPN) is a scanning probe lithography technique where an atomic force microscope tip is used to transfer molecules to a surface via a solvent meniscus. This technique allows surface patterning on scales of under 100 nanometres. DPN is the nanotechnology analog of the dip pen (also called the quill pen), where the tip of an atomic force microscope cantilever acts as a “pen,” which is coated with a chemical compound or mixture acting as an “ink,” and put in contact with a substrate, the “paper.”DPN enables direct deposition of nanoscale materials onto a substrate in a flexible manner. The vehicle for deposition can include pyramidal scanning probe microscope tips, hollow tips, and even tips on thermally actuated cantilevers. Recent advances have demonstrated massively parallel patterning using two-dimensional arrays of 55,000 tips, depicted below. Applications of this technology currently range through chemistry, materials science, and the life sciences, and include such work as ultra high density biological nanoarrays, additive photomask repair, and brand protection for pharmaceuticals.


Author(s):  
Bijoyraj Sahu ◽  
Curtis R. Taylor ◽  
Robert O. Riddle ◽  
Kam K. Leang

The scanning probe microscope (SPM), in particular the atomic force microscope (AFM), is widely used as a metrology tool at the nanoscale. Recently, the instrument has shown tremendous potential to perform various nanoscale fabrication processes (e.g. nanolithography, atomic deposition, nanomachining, etc.) with high resolution (< 10 nm). However, use of SPMs for fabrication have a low throughput and require frequent manual replacement of the SPM tips due to damage or wear. Manual switching of tips for multiple operations, is relatively time consuming. Thus these issues hinder the throughput, quality, reliability, and scalability of SPM as a practical tool for nanofabrication. To address these issues, this paper presents the design, analysis, and fabrication of a novel nano tool-tip exchanger that automatically loads and unloads SPM tool-tips. The ability to provide fully automated on-demand tool-tip exchange would enable SPM as a scalable tool for nanomanufacturing. In this work, an active SPM cantilever is designed with an electrothermally actuated microgripper capable of locating, loading, and unloading tool-tips automatically. The microgripper has been designed to provide adequate range of actuation, gripping force, stiffness, and dynamic response required for securely holding the tool-tip and for functioning within existing SPM-based systems. The design has been validated by finite element analysis. Experiments have been conducted to establish the micro-electro-mechanical systems (MEMS) fabrication processes for successful fabrication of the prototype.


2005 ◽  
Vol 13 (2) ◽  
pp. 12-17
Author(s):  
Paul West ◽  
Zhiqiang Peng ◽  
Natalia Starostina

Traditionally a scanning probe microscope (SPM), such as the atomic force microscope (AFM), affords spectacular images of surfaces at the nanometer scale. With advanced developments in scanner design, probe manufacturing and force sensor technology it is now possible to make quantitative metrological measurements with an SPM. Quantitative metrological measurements that are possible include: a) dimensional measurements of micro/nano fabricated structures, b) surface texture of surfaces having RMS values of only a few angstroms, and c) measurements of the number of grains, and particles on a surface as well as grain and particle sizes, areas, volumes, and distributions.


2020 ◽  
Vol 13 (3-4) ◽  
pp. 222-228
Author(s):  
И.В. Яминский ◽  
А.И. Ахметова

Разработка высокоэффективных режимов быстродействующего сканирующего зондового микроскопа, в первую очередь атомно-силовой и сканирующей капиллярной микроскопии, представляет особый интерес для успешного проведения биомедицинских исследований: изучения биологических процессов и морфологии биополимеров, определения антибио­тикорезистентности бактерий, адресной доставки биомакромолекул, скринингу лекарств, раннему обнаружению биологических агентов (вирусов и бактерий) и др. The development of highly efficient modes of a high-speed scanning probe microscope, primarily atomic force and scanning capillary microscopy, is of particular interest for successful biomedical research: studying biological processes and the morphology of biopolymers, determining antibiotic resistance of bacteria, targeted delivery of biomacromolecules, drug screening, early detection agents (viruses and bacteria), etc.


Author(s):  
Janik Schaude ◽  
Maxim Fimushkin ◽  
Tino Hausotte

AbstractThe article presents a redesigned sensor holder for an atomic force microscope (AFM) with an adjustable probe direction, which is integrated into a nano measuring machine (NMM-1). The AFM, consisting of a commercial piezoresistive cantilever operated in closed-loop intermitted contact-mode, is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The axes greatly enlarge the metrology frame of the measuring system by materials with a comparatively high coefficient of thermal expansion. The AFM is therefore operated within a thermostating housing with a long-term temperature stability of 17 mK. The sensor holder, connecting the rotational axes and the cantilever, inserted one adhesive bond, a soldered connection and a geometrically undefined clamping into the metrology circle, which might also be a source of measurement error. It has therefore been redesigned to a clamped senor holder, which is presented, evaluated and compared to the previous glued sensor holder within this paper. As will be shown, there are no significant differences between the two sensor holders. This leads to the conclusion, that the three aforementioned connections do not deteriorate the measurement precision, significantly. As only a minor portion of the positioning range of the piezoelectric actuator is needed to stimulate the cantilever near its resonance frequency, a high-speed closed-loop control that keeps the cantilever within its operating range using this piezoelectric actuator further on as actuator was implemented and is presented within this article.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


2015 ◽  
Vol 830-831 ◽  
pp. 589-591 ◽  
Author(s):  
Hakikat Sharma ◽  
N.S. Negi

In the present study we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4and Ni0.94Cu0.05Co0.01Fe2O4thin films by metallo-organic decomposition method (MOD) using spin coating technique. The samples were characterized by XRD. XRD patterns of thin films confirmed the formation of cubic spinel structure without any secondary phase. For microstructural analysis we characterized samples by Scanning Probe Microscope (SPM). From Atomic force microscopy (AFM), we analyzed surface morphology, calculated grain size, roughness and porosity. It has been found that grain size and roughness affected by Cu, Co substitution. After this we carried out magnetic force microscopy (MFM) on the samples. Effect of substitution on magnetic grains was observed from MFM.


Sign in / Sign up

Export Citation Format

Share Document