Evaluation of the Influence of the Conditions of Catalytic Continuous Steam Explosive Activation of Wood on the Physical and Operational Properties of Wooded Composite Materials Based on Activated Fibers

2021 ◽  
Vol 887 ◽  
pp. 129-137
Author(s):  
Dmitry B. Prosvirnikov ◽  
R.R. Safin ◽  
R.R. Kozlov

This article presents the results of studies of obtaining wood composite board materials without binders using the method of preliminary steam explosive treatment, as well as an assessment of the impact of impregnation conditions and continuous steam explosive activation of wood on the physical and operational properties of wood-based composite materials based on activated fibers. The rational operating parameters for obtaining board wood-composite materials (WCM) have been determined. We established the influence of impregnation modes (temperature, catalyst concentration), continuous steam explosive treatment with afterwash (temperature, pressure, intensity of mechanical action), as well as the properties of activated lignocellulose fibers (composition and morphological structure) on the operational properties of WCM. The expediency of introducing a catalyst (sodium bisulfite) at the washing stage has been proved, since the introduction of sodium bisulfite during impregnation before steam explosive treatment promotes the formation of lignosulfonates in the activated material, which participate in the formation of the physical properties of WCM.

2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


1998 ◽  
Vol 26 (2) ◽  
pp. 89-110 ◽  
Author(s):  
R. A. W. Mines

The paper describes a final-year undergraduate course that has been taught at the University of Liverpool for the past three years. The main aims of the course are to introduce the student to the design of structures using multi-component (composite) materials and to the performance of such structures under impact loading. Given the complexity of generalized composite behaviour and of structural crashworthiness, a simple structural case is considered, namely, a beam subject to three-point bending. A feature of the course is that not only is linear structural response considered but also non-linear (progressive) structural collapse is covered. The course is split into four parts, namely: (i) analysis of composite laminae, (ii) analysis of laminated beams, (iii) local and global effects in sandwich beams, and (iv) post-failure and progressive collapse of sandwich beams. Static and impact loadings are considered. Comments are made on how the theories are simplified and communicated to the undergraduate students.


2020 ◽  
Vol 70 (3) ◽  
pp. 283-292
Author(s):  
Daniel Way ◽  
Frederick A. Kamke ◽  
Arijit Sinha

Abstract Development of moisture gradients within wood and wood-based composites can result in irreversible moisture-induced damage. Accelerated weathering (AW), generally employing harsh environmental conditions, is a common tool for assessing moisture durability of wood composite products. Use of milder AW conditions, such as cyclic changes in relative humidity (RH), may be of interest to the wood-based composites industry in assessing moisture durability under more realistic conditions. The primary objective of this study was to determine whether moisture profile development in oriented strand board and plywood during cyclic RH changes could be reasonably predicted with a simple moisture transport model, which may be practical for wood-based composite industry members seeking to develop new AW protocols. The diffusion model based on Fick's second law with empirically determined moisture transport parameters fits the experimental data reasonably well for the purpose of screening RH parameters.


2018 ◽  
Vol 1150 ◽  
pp. 22-42
Author(s):  
Dinesh Shinde ◽  
Kishore N. Mistry ◽  
Suyog Jhavar ◽  
Sunil Pathak

The peculiar feature of friction materials to absorb the kinetic energy of rotating wheels of an automobile to control the speed makes them remarkable in automobile field. The regulation of speed cannot be achieved with the use of single phase material as a friction material. Consequently, the friction material should be comprised of composite materials which consist of several ingredients. Incidentally, the friction materials were formulated with friction modifier, binders, fillers and reinforcements. Due to its pleasant physical properties, asbestos was being used as a filler. Past few decades, it is found that asbestos causes dangerous cancer to its inhaler, which provides a scope its replacement. Several attempts have been made to find an alternative to the hazardous asbestos. The efforts made by different researchers for the impact of every composition of composite friction material in the field are reviewed and studied for their effect on the properties of friction material. Surface morphological studies of different friction material are compared to interpret the concept of surface wear and its correlation with material properties.


2019 ◽  
Vol 140 ◽  
pp. 02004
Author(s):  
Aleksey Ignatov ◽  
Rustam Subkhankulov

Numerous studies in application of modern composite materials show that their advantages can be successfully implemented in manufacturing «smart» products. This study proposes an improved technological method of manufacturing multilayer environmentally friendly products with a variable cross section, which allows us to expand the possibilities of using modern polymer composite materials (PCM). The technology allows manufacturing products of the most complex geometric shapes, such as wind turbine blades. The aim of the study is the technological support of engineering production in the manufacture of multilayer products of variable cross section made from PCM. Scientific novelty consists in identifying the patterns of implementation and management of the manufacturing process of multilayer products of variable cross-section, and establishing the influence of structural and technological parameters of the manufacturing process on their operational characteristics. The relationship between the pressure of a hot directed air stream and the volume fraction of pores in the hardened material of a multilayer composite product with a variable cross section during layer-by-layer application is investigated. During the study, fundamental and applied principles of mechanical engineering technology, material resistance, adhesion theory, mathematical statistics tools and software were used to process the results of the experiment. Based on the results of laboratory studies, a methodology has been developed for effective prediction of pore content in the manufacturing of composite products. The introduction of the presented technology and the corresponding original methodology into production will reduce the complexity and energy costs of manufacturing composite products, improve their quality and reduce the impact of toxic components from composite materials on workers.


2012 ◽  
Vol 583 ◽  
pp. 49-52
Author(s):  
Zhong Hai Wang ◽  
Ru Jian Yuan ◽  
Xiao Bing Fan

With the table tennis technical innovation and improvement of science, high-performance materials are used to manufacture of table tennis plate floor and help athletes have achieved better results. This article elaborated the wood composite materials’s impact on batting techniques through the analysis of the function of table tennis racket floor and its structure and capacity based on material science for provide the reference on manufacturing and selecting of table tennis racket.


2003 ◽  
Vol 61 (1-2) ◽  
pp. 151-159 ◽  
Author(s):  
A. Arias ◽  
R. Zaera ◽  
J. López-Puente ◽  
C. Navarro

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chinedu I. Ossai

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models.


Sign in / Sign up

Export Citation Format

Share Document