scholarly journals Bio-Based Composites from Industrial By-products and Wastes as Raw Materials

2020 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Roxana Dinu ◽  
Alice Mija

Innovative bio-based composites combining humins as biorefinery by-product with keratin or lignin as wastes or industrial side-products were developed. The bio-composites were prepared using three types of matrix formulations allowing the synthesis of elastic to rigid thermosets. These matrices were combined with chicken feathers powder, non-woven chicken feathers mat or lignin to produce bio-composites. A maximum quantity of bio-fillers was used, around 10 wt.%. The effect of the bio-fillers on the matrix’s crosslinking was studied by rheology and DSC. Then, the obtained materials were analyzed by TGA, DMA, tensile tests, water absorption and SEM. The results show a very good compatibility of the humins matrix with the bio-fillers, without any preliminary modification of the matrix, that is exceptional for the point of view of a composite. The overall performances of the neat matrix were maintained or improved through the composites. Therefore, bio-composites with potentially interesting thermal and mechanical properties have been synthesized. In the case of the elastic ductile matrix the Young’s modulus value was improved from 1 to 22 MPa, while for the rigid matrix the increase was from 106 to 443 or 667 MPa, in the case of composites with non-woven chicken feathers mat or lignin. To our knowledge this is the first study combining humins matrix with keratin. The obtained bio-composites are sustainable materials linked via the used raw materials to the circular economy and biomass valorization.

2021 ◽  
Vol 53 (5) ◽  
pp. 210513
Author(s):  
Jefri Bale ◽  
Yeremias Pell ◽  
Kristomus Boimau ◽  
Boy Bistolen ◽  
Dion Rihi

The main focus of the present work was to study corn skin as reinforcement of polyester bio-composite (CSPCs). The effect of reinforcement type, i.e. short fibers and discontinuous chips, on the tensile properties was studied. The corn skin materials were chemically treated with NaOH and added as reinforcement of polyester bio-composite using the hand lay-up fabrication method. Tensile tests were carried out according to ASTM D3039. The tensile strength characteristics of stress and modulus showed a different behavior between the two types of reinforcement due to a slight difference in specimen thickness, which affected the calculated stress and modulus values. Furthermore, from a physical properties point of view, the larger surface area of CSC compared to CSF, which still contains a lignin layer after the treatment with NaOH, could decrease the interfacial bonding between polyester as the matrix and CSC as the reinforcement. The tensile damage characteristics showed brittle behavior, propagataing perpendicular to the loading direction. Matrix cracking and interfacial debonding were identified as the main two damage modes of the CSF bio-composite and the CSC bio-composite, where the final failure was dominated by fiber pull out and chip fracture.


2020 ◽  
Vol 12 (3) ◽  
pp. 847 ◽  
Author(s):  
Canio Manniello ◽  
Dina Statuto ◽  
Andrea Di Pasquale ◽  
Gerardo Giuratrabocchetti ◽  
Pietro Picuno

Circular economy aims to create a system that allows an optimal reuse of products and materials. According to an appropriate planning hierarchy, agricultural and agro-food co-products, by-products and wastes should be primarily employed to re-balance soil fertility, and afterwards valorized as new secondary raw materials used in the same agricultural sector or in different industrial chains (e.g., cosmetics, nutraceuticals, etc.). Finally, only at the end of this process, they could be conveyed to energy production through co-generation. In this paper, different residues generated by the wine production chain have been considered with reference to the Basilicata region (Southern Italy). These biomasses have been quantitatively assessed and qualitatively classified, in order to find the most rational and convenient solution for their valorization from a technical, economic and environmental point of view. From the spatial analysis—elaborated by implementing a Geographic Information System—some thematic maps have been obtained, which allow us to highlight the areas with the highest concentration of residues. In this way, focusing the analysis on these areas, some possible strategies for their management and valorization have been proposed, so as to restore soil fertility and contribute to the sustainable preservation of the rural landscape.


2020 ◽  
Vol 54 (30) ◽  
pp. 4841-4852 ◽  
Author(s):  
Douglas Lamounier Faria ◽  
Laércio Mesquita Júnior ◽  
Ana Angélica Resende ◽  
Daiane Erika Lopes ◽  
Lourival Marin Mendes ◽  
...  

Currently, the use of composites to replace parts made only with plastics has been gradually employed. The advantages of these composites are low cost, high availability of raw materials and good physical and mechanical properties. Thus, this work aimed at producing and characterizing composites produced with coconut fibre reinforced polyurethane matrices. The coconut fibres were studied as to their chemical constituents, aspect ratio, bulk density, pH, tensile properties, and surface SEM images. The composites were prepared using the hand lay-up process and four different concentrations of coconut fibre were evaluated: 30, 40, 50, and 60%. The composites were assessed as for water absorption after 20 days of immersion, bulk density, impact IZOD, tensile tests, and visualize the matrix-reinforcement interface using SEM. The electron micrographs showed a great deal of impurities on the surface of coconut fibres, such as greases, waxes, and gums, due to the high amount of extraction material (19.78%), which damages the adherence of the polymer onto the coconut fibre and, as observed, cause detachment between the reinforcement and the matrix. The tensile strength of the composites tended to increase as greater amounts of coconut fibres were added to the matrix. The averages were around 6.51 to 6.72 MPa for composites with 30 and 60% fibres, respectively. Therefore, coconut fibres can be considered as an alternative to synthetic fibres commonly used in composites, and they can be used at a ratio of 60% without prejudicing the properties of the composites, making them lighter and cheaper.


2020 ◽  
Vol 13 (6) ◽  
pp. 13-23
Author(s):  
O. Obodovych ◽  

The use of plant biomass as a primary source of energy is currently unacceptable both from an economic and environmental point of view. The experience of a number of industries, in particular hydrolysis production, enables to solve the problem of profitability of organic biomass treatment by its deep complex processing with the resulting components whose cost exceeds the cost of organic raw materials as fuel. Currently, the main results of complex processing of organic raw materials are still energy-intensive products ̶ bioethanol and hydrolyzed lignin, which energy characteristics are commensurate with fossil fuels. Bioethanol production from starch-containing, sugar-containing or lignocellulosic raw materials requires the use of different technological stages and, accordingly, the cost of bioethanol for each type of raw material is different. Compared to bioethanol produced from sugar and starch raw materials, bioethanol manufactured from lignocellulosic raw materials is more expensive. Bioethanol obtained from lignocellulosic raw materials is more expensive compared to bioethanol from sugar and starch raw materials. The most energy-intensive in the technology of bioethanol obtaining from lignocellulosic raw materials is the stage of pretreatment of raw materials for hydrolysis, because the process of preliminary preparation and hydrolysis with dilute acids occurs at high temperatures and pressures. During enzymatic hydrolysis, the process temperature is maintained for a long time (up to several days). To ensure deep integrated processing of plant raw materials, as well as to reduce overall costs, it was proposed to improve the technology and equipment, which allow increasing the degree of conversion of raw materials into basic and by-products.


2008 ◽  
Vol 59 (2) ◽  
pp. 129-134
Author(s):  
Ion Teoreanu ◽  
Roxana Lucia Dumitrache ◽  
Stefania Stoleriu

Any change of the raw material sources for glazes, economically, ecologically motivated, and also from the glaze quality point of view, is conditioned by the molecular formula rationalization and by the variation limits of the molecular formula, respectively. The proper glaze compositions are placed within their limit variation intervals with optimized processing and utilization properties. For this purpose, the rationalization criteria and procedures of molecular formulas are summarized in the present paper, as well as the results referring to their rationalization obtained in the authors� previous work. Thus, one starts from a base of raw materials that are selected, usable and also accessible for the design and producing of the glazes. On these bases the groundwork and the design equation for the glaze recipes are developed, exemplified for a single glaze. For an easy access to results, computer programs are used for an easy access to results.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna

The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


Author(s):  
Fayu Wang ◽  
Nicholas Kyriakides ◽  
Christis Chrysostomou ◽  
Eleftherios Eleftheriou ◽  
Renos Votsis ◽  
...  

AbstractFabric reinforced cementitious matrix (FRCM) composites, also known as textile reinforced mortars (TRM), an inorganic matrix constituting fibre fabrics and cement-based mortar, are becoming a widely used composite material in Europe for upgrading the seismic resistance of existing reinforced concrete (RC) frame buildings. One way of providing seismic resistance upgrading is through the application of the proposed FRCM system on existing masonry infill walls to increase their stiffness and integrity. To examine the effectiveness of this application, the bond characteristics achieved between (a) the matrix and the masonry substrate and (b) the fabric and the matrix need to be determined. A series of experiments including 23 material performance tests, 15 direct tensile tests of dry fabric and composites, and 30 shear bond tests between the matrix and brick masonry, were carried out to investigate the fabric-to-matrix and matrix-to-substrate bond behaviour. In addition, different arrangements of extruded polystyrene (XPS) plates were applied to the FRCM to test the shear bond capacity of this insulation system when used on a large-scale wall.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1688
Author(s):  
Ying-Ju Chen ◽  
Chun-Yen Kuo ◽  
Zwe-Ling Kong ◽  
Chin-Ying Lai ◽  
Guan-Wen Chen ◽  
...  

The Taiwan Tilapia is an important aquaculture product in Taiwan. The aquatic by-products generated during Tilapia processing, such as fish bones and skin, are rich in minerals and protein. We aimed to explore the effect of a dietary supplement, comprising a mixture of fermented Tilapia by-products and Monostroma nitidum oligosaccharides as the raw materials, combined with physical training on exercise performance and fatigue. We used a mouse model that displays a phenotype of accelerated aging. Male senescence-accelerated mouse prone-8 (SAMP8) mice were divided into two control groups—with or without physical training—and supplemented with different doses (0.5 times: 412 mg/kg body weight (BW)/day; 1 time: 824 mg/kg BW/day; 2 times: 1648 mg/kg BW/day) of fermented Tilapia by-products and Monostroma nitidum oligosaccharide-containing mixture and combined with exercise training groups. Exercise performance was determined by testing forelimb grip strength and with a weight-bearing exhaustive swimming test. Animals were sacrificed to collect physical fatigue-related biomarkers. Mice dosed at 824 or 1648 mg/kg BW/day showed improvement in their exercise performance (p < 0.05). In terms of biochemical fatigue indicators, supplementation of 824 or 1648 mg/kg BW/day doses of test substances could effectively reduce blood urea nitrogen concentration and lactate concentration and increase the lactate ratio (p < 0.05) and liver glycogen content post-exercise (p < 0.05). Based on the above results, the combination of physical training and consumption of a dietary supplementation mixture of fermented Tilapia by-products and Monostroma nitidum oligosaccharides could improve the exercise performance of mice and help achieve an anti-fatigue effect.


Sign in / Sign up

Export Citation Format

Share Document