scholarly journals Content of pyrrolizidine alkaloids in the leaves of coltsfoot (Tussilago farfara L.) in Poland

2013 ◽  
Vol 82 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Artur Adamczak ◽  
Bogna Opala ◽  
Agnieszka Gryszczyńska ◽  
Waldemar Buchwald

Coltsfoot (<em>Tussilago farfara</em> L.) is a common species, widely used in European and Chinese traditional medicine for the treatment of respiratory diseases. However, raw material from this plant contains hepatotoxic pyrrolizidine alkaloids (PAs). The aim of the study was to determine the variability of the level of PAs (senkirkine and senecionine) in leaves of coltsfoot originated from natural populations in Poland. In the phytochemical analysis, 20 samples of <em>T. farfara</em> were used. This plant material was obtained from the Garden of Medicinal Plants in Plewiska near Poznań and originated from different regions of Poland. Coltsfoot leaves were harvested in the middle of July of 2010 and then dried at room temperature. The alkaloid content was detected using the HPLC-DAD method. The amount of PAs in leaves of <em>T. farfara</em> changed in a wide range from 0.06 to 1.04 μg g<sup>−1</sup> of dry matter (DM). The content of senkirkine and senecionine was positively correlated (<em>r</em> = 0.68, <em>P</em> = 0.001). There was no statistically significant correlation between the amount of PAs as well as leaf weight and water content in leaves of <em>T. farfara</em>. Our results showed that a medium-sized leaf of coltsfoot (0.33 g DM) may contain from 0.02 to 0.34 μg of PAs (on average 0.14 μg). The level of PAs was not associated with the region of Poland, but phytochemical similarity of samples was usually visible at the local scale. Coltsfoot leaves are characterized by a high variability of the content of toxic PAs, much higher than in the case of the main active compounds, especially flavonoids and mucilage.<br /> This phytochemical variability is mainly genetically determined (samples came from a garden collection), and it can be increased by environmental factors. Our investigations indicate that Polish natural populations of <em>T. farfara</em> may provide raw material with a low level of toxic PAs.

1979 ◽  
Vol 51 (1) ◽  
pp. 158-162 ◽  
Author(s):  
Antti Jaakkola ◽  
Johan Korkman ◽  
Tuomo Juvankoski

The aim of the study was to find out to what extent the cadmium contained in fertilizer influences the cadmium content of vegetables. For this purpose, highly cadmium-bearing batches of fertilizer were prepared from selected quantities of raw material with an exceptionally high cadmium content. To one such batch of fertilizer, an extra amount of cadmium was added at the mixing stage. In a two-year field experiment carried out in soil consisting of clayey fine sand and begun in 1977, 1000 kg/ha of NPK fertilizer with a cadmium content of either 57 or 81 mg/kg brought about a clear increase in the cadmium content of radish tops. The cadmium content of radish roots, spinach and lettuce appeared likewise to rise, but the differences registered were not, owing to the unevenness of the field, significant. The cadmium content of the dry matter of rye grass was lower than that of the other experimental plants, and it appeared to rise less with an increase in the cadmium content of the fertilizer. Owing to the wide range of variation, the cadmium uptake of the experimental plants could not be determined reliably, The spinach, however, appeared to have taken up the largest amount of cadmium, and the rye grass the least amount. The increase in the cadmium content of the spinach harvested in 1978 corresponded to 1.5‰ of the cadmium introduced into the ground during the two-year period through application of the fertilizer with the highest content of the metallic element.


Author(s):  
S. T. Antipov ◽  
V. Yu. Ovsyannikov ◽  
A. A. Korchinskij

The urgency of the use of blood components as a raw material for the production of products from it that contribute to the prevention and treatment of iron deficiency states is beyond doubt. In addition, protein compounds in the blood of cattle have a high digestibility of the human body, and the complex of essential amino acids determines its attractiveness as an additive in the development of a wide range of meat products. The only possible way at present to thicken thermo labile blood compounds is cryoconcentration, carried out in a temperature range close to the cryoscopy temperature. The kinetic features of cryoconcentration of cattle blood were investigated on an experimental apparatus of cyclic action. It is shown that the conditions of cryoconcentration are determined by the boiling point of the refrigerant in the evaporator of the installation, the flow rate of the original blood washing the heat exchange surface and the content of soluble compounds in the initial liquid. Experimental data are presented in the form of growth curves of frozen ice on the heat exchange surface with an area of 0.2 m2. Using mathematical planning methods, equations are obtained that describe the amount of ice frozen for 1 hour per unit of surface area of the freezing plant, the specific energy input for freezing one kilogram of ice, and the dry matter content of the blood in the solution obtained by melting the frozen ice. The solved problem of optimizing the process of blood cryoconcentration made it possible to find rational intervals for changing the operating parameters of the freezing plant, ensuring the maximum amount of frozen ice, minimal energy costs and minimal content of soluble substances in the solution obtained by melting frozen ice. The suboptimal intervals of the indicated parameters were the following: refrigerant boiling point 256– 260 K, blood consumption (0.20–0.205)·10-3 m3/s, dry matter content 22.5–23.0 %.


Genetika ◽  
2007 ◽  
Vol 39 (3) ◽  
pp. 305-314 ◽  
Author(s):  
Evica Mratinic ◽  
Milica Fotiric

To carry out domestication, five genotypes (B1, B2, R, VG and RK) were isolated from natural populations by selection of black elderberry (Sambucus nigra L.). The most prominent biological-technological characteristics were studied during fruit flowering and ripening. Flowering proceeded in the period from mid-April to the 1st decade of June, while ripening lasted from the 1st decade of August to the 1st decade of October. The largest inflorescences were found in genotype R (14.32 cm in diameter). The highest number of berries per inflorescence (on average, 280), the largest berry (on average, 0.21 g), and the best fruit quality (17.19% dry matter, 11.50% sugars, 35 mg vitamin C, and 2.58 g/l total colored matter) were all demonstrated by genotype VG. In all isolated genotypes fruit demonstrated biologically high quality, which makes it a good raw material desirable for diverse forms of processing. Its high yield level, pronounced resistance to disease agents and pests, as well as adaptability to adverse conditions are a recommendation for organic-based production.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


2012 ◽  
Vol 8 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Zsuzsanna Horváth ◽  
Béla Marosvölgyi ◽  
Christine Idler ◽  
Ralf Pecenka ◽  
Hannes Lenz

Abstract - There are several problems in storing wood chips freshly harvested from short rotation plantations, which result in quality losses as well as in dry matter and energy losses. The factors influencing the degradation of raw material are examined in this paper with special focus on fungal development. An excessive growth of fungi is connected to dry matter losses and also to an increased health risk during raw material handling. The following factors were measured during 6 months storage of poplar wood chips depending on particle size: box temperature, moisture content, pH-value, appearance of fungi in the storage and the concentration of fungal particles in the air. The results show a close connection between particle size, temperature and attack of fungi. During the storage mesophilic and termophilic species of the genera Alternaria, Aspergillus, Cladosporium, Mucor and Penicillium appeared. The concentration of fungal particles is the highest for fine chips and decreases in bigger particles. There was a special focus on the investigation of the properties of coarse chips (G 50), which represent a good compromise between handling, storage losses and health risk due to fungal development.


2016 ◽  
Vol 5 (11) ◽  
pp. 5110
Author(s):  
Sartaj Ahmad Allayie ◽  
Mushtaq Ahmed Parray* ◽  
Bilal Ahmad Bhat ◽  
S. Hemalatha

The use of traditional medicines holds a great promise as an easily available source as effective medicinal agents to cure a wide range of ailments among the people particularly in tropical developing countries like India. The present study investigates the qualitative and quantitative analysis of the major bioactive constituents of N. crenulata leaf extracts. The extractive values of aqueous, acetone and chloroform extracts were found to be 11.34, 4.24 and 6.06 respectively. Qualitative phytochemical analysis of these three solvent extracts confirm the presence of Alkaloids, Saponins, Flavonoids and Phenolic compounds in all the three extracts; however, these phytochemicals were more significant in aqueous extract. Quantitative analysis was carried out using TLC method by different solvent system. Amongst various solvent systems, Butanol: acetic acid: water (9: 0.9: 0.1 v/v/v) shows maximum resolution and number of spots produced at long UV (365 nm) and under iodine vapours. The TLC chromatograms constituted different coloured phytochemical compounds with different Rf values. It can be conveniently used to evaluate the quality of different area samples. This indicates that the leaves can be useful for treating different diseases because the therapeutic activity of a plant is due to the presence of particular class of compounds and thus can serve as potential sources of useful drugs in future.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document