scholarly journals Adipose tissue – morphological and biochemical characteristic of different depots

2017 ◽  
Vol 71 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Eugenia Murawska-Ciałowicz

Adipose tissue is an organ that performs a lot of significant physiological functions, which is why its excess in the body results in pathological states in many of its organs and systems. Adipose tissue is not only a tissue which stores fat and plays a protective role. It is an important endocrine organ where signals sent from different tissues are generated and integrated. Adipose tissue is both morphologically and physiologically differentiated. However, due to their plasticity, adipocytes can undergo a transformation and change their structure and metabolism depending on the physiological state of the organism and the conditions to which it is exposed.

2016 ◽  
Vol 231 (3) ◽  
pp. R77-R99 ◽  
Author(s):  
Liping Luo ◽  
Meilian Liu

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.


2013 ◽  
Vol 45 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Iuan-bor D. Chen ◽  
Vinay K. Rathi ◽  
Diana S. DeAndrade ◽  
Patrick Y. Jay

The physiological functions of a tissue in the body are carried out by its complement of expressed genes. Genes that execute a particular function should be more specifically expressed in tissues that perform the function. Given this premise, we mined public microarray expression data to build a database of genes ranked by their specificity of expression in multiple organs. The database permitted the accurate identification of genes and functions known to be specific to individual organs. Next, we used the database to predict transcriptional regulators of brown adipose tissue (BAT) and validated two candidate genes. Based upon hypotheses regarding pathways shared between combinations of BAT or white adipose tissue (WAT) and other organs, we identified genes that met threshold criteria for specific or counterspecific expression in each tissue. By contrasting WAT to the heart and BAT, the two most mitochondria-rich tissues in the body, we discovered a novel function for the transcription factor ESRRG in the induction of BAT genes in white adipocytes. Because the heart and other estrogen-related receptor gamma (ESRRG)-rich tissues do not express BAT markers, we hypothesized that an adipocyte co-regulator acts with ESRRG. By comparing WAT and BAT to the heart, brain, kidney and skeletal muscle, we discovered that an isoform of the transcription factor sterol regulatory element binding transcription factor 1 (SREBF1) induces BAT markers in C2C12 myocytes in the presence of ESRRG. The results demonstrate a straightforward bioinformatic strategy to associate genes with functions. The database upon which the strategy is based is provided so that investigators can perform their own screens.


Bionatura ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 879-882
Author(s):  
Francisco Santacruz-Hidalgo ◽  
Eliana Viscarra-Sanchez

Brown adipose tissue is one of the principal generators of heat in the body; due to the activation of many hormones and receptors, it takes a fundamental role in thermogenesis. However recent studies have proved that this is not its only function. Brown adipose tissue could also act as an endocrine organ, which means that it releases chemical substances to the blood and regulate some activities in the organism. This cell communication process is momentous, since allowing cells to exchange physicochemical information with the environment and other cells in the body could be a relevant field of study in treatments of obesity, diabetes and other diseases related with body weight. This paper offers an overview of different transcriptional factors, endocrine regulation and therapeutic applications of the brown fat tissue, and also the distinctions that it has with white adipose tissue and beige adipose tissue.


2020 ◽  
Vol 11 (4) ◽  
pp. 6-23
Author(s):  
Z. Sh. Pavlova ◽  
I. I. Golodnikov

Today, adipose tissue has ceased to be perceived only as an energetic substance with its intrinsic properties in the form of thermoregulation and mechanical protection, known since the beginning of the twentieth century. Today, adipose tissue is a fullfledged endocrine organ that is distributed throughout the body — the usefulness of its work directly affects the energy balance, not only through involvement in the metabolism of carbohydrates and fats, but also by the production of many adipokines, a total of more than 600 known today. This review research the causal relationship of subclinical or systemic inflammation of adipose tissue with an excess of energy resources, insulin resistance, leptin, adiponectin, estrogen metabolites and one of the most pro-inflammatory cytokines - interleukin 6. Attention is also paid to the relationship between prostate cancer and obesity, as an ambiguous relationship due to the maximum paying attention to testosterone. Further study of adipose tissue will make it possible to establish specific pathophysiological mechanisms responsible for the development of not only disorders of carbohydrate metabolism, but also a number of other systems in view of the not fully understood systemic action of adipokines and associated inflammatory mediators in obese individuals. Systematic literature search was perform in the Medline, Scopus, Web of Science and elibrary databases.


2021 ◽  
Vol 18 (3) ◽  
pp. 320-326
Author(s):  
V. A. Beloglazov ◽  
I. A. Yatskov ◽  
E. D. Kumelsky ◽  
V. V. Polovinkina

This review article presents data from the literature, which provide an idea of the relationship between metabolic disorders occurring against the background of obesity and endotoxinemia, as well as the effect of these conditions on the maintenance of low-grade inflammation in the body. A description of the hormonal and immune restructuring of white adipose tissue, the main routes of entry and metabolism of endotoxin is given. Particular attention is paid to the mechanisms of the mutual influence of obesity and endotoxinemia. Described by Yakovlev M.Yu. in 1988 «endotoxin aggression» and Cani P.D. et al. in 2007, «metabolic endotoxinemia», in our opinion, is one of the most important triggers for the development and progression of a whole spectrum of acute and chronic diseases. Based on the data of recent years, adipose tissue is an active endocrine organ capable of influencing both metabolic processes and the state of innate and acquired immune defense mechanisms. It has now been proven that high-calorie diets lead not only to an increase in overweight, but also to an increase in the level of endotoxin circulating in the blood. An in-depth study of the ability of obesity and endotoxinemia to potentiate the mutual pro-inflammatory effect can help both in understanding the pathogenesis of the main cardiovascular, autoimmune, allergic and infectious (including viral) diseases, and in the development of methods for non-pharmacological and drug correction of these conditions.


Biology ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Jacqueline Stephens ◽  
Eric Ravussin ◽  
Ursula White

Cardiotrophin-1 (CT-1) is a gp130 cytokine that was previously characterized for its effects on cardiomyocytes and identified as a marker of heart failure. More recent studies reported elevated circulating levels of CT-1 in humans with obesity and metabolic syndrome (MetS). However, a subsequent rodent study implicated CT-1 as a potential therapeutic target for obesity and MetS. Adipose tissue (AT) is broadly acknowledged as an endocrine organ and is a substantial source of CT-1. However, no study has examined the expression of adipose-derived CT-1 in humans. We present the first analysis of CT-1 mRNA expression in subcutaneous AT and its association with clinical variables in 22 women with obesity and 15 men who were 40% overfed for 8-weeks. We observed that CT-1 expression was higher in the subcutaneous abdominal (scABD) than the femoral (scFEM) depot. Importantly, we reveal that scFEM but not scABD, CT-1 expression was negatively associated with visceral adiposity and intrahepatic lipid, while positively correlated with insulin sensitivity in obese women. Also, men with higher CT-1 levels at baseline had less of a decline in insulin sensitivity in response to overfeeding. Our data provide new knowledge on the regulation of adipose-derived CT-1 in obesity and during weight gain in response to overfeeding in humans and suggest that CT-1 may play a protective role in obesity and related disorders.


2021 ◽  
Author(s):  
Volkan Gelen ◽  
Abdulsamed Kükürt ◽  
Emin Şengül ◽  
Hacı Ahmet Devecı

Adipose tissue (AT) in the body plays a very important role in the regulation of energy metabolism. AT regulates energy metabolism by secreting adipokines. Some of the adipokines released are vaspin, resistin, adiponectin, visfatin and omentin, and leptin. In addition to regulating energy metabolism, leptin plays a role in the regulation of many physiological functions of the body such as regulation of blood pressure, inflammation, nutrition, appetite, insulin and glucose metabolism, lipid metabolism, coagulation, and apoptosis. Among all these physiological functions, the relationship between leptin, oxidative stress, and apoptosis has gained great importance recently due to its therapeutic effect in various types of cancer. For this reason, in this study, the release of leptin, its cellular effects and its effect on oxidative stress, and apoptosis are discussed in line with current information.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1710
Author(s):  
Patrycja Kurowska ◽  
Ewa Mlyczyńska ◽  
Monika Dawid ◽  
Małgorzata Jurek ◽  
Dominika Klimczyk ◽  
...  

Proper functioning of the body depends on hormonal homeostasis. White adipose tissue is now known as an endocrine organ due to the secretion of multiple molecules called adipokines. These proteins exert direct effects on whole body functions, including lipid metabolism, angiogenesis, inflammation, and reproduction, whereas changes in their level are linked with pathological events, such as infertility, diabetes, and increased food intake. Vaspin-visceral adipose tissue-derived serine protease inhibitor, or SERPINA12 according to serpin nomenclature, is an adipokine discovered in 2005 that is connected to the development of insulin resistance, obesity, and inflammation. A significantly higher amount of vaspin was observed in obese patients. The objective of this review was to summarize the latest findings about vaspin expression and action in endocrine tissues, such as the hypothalamus, pituitary gland, adipose tissue, thyroid, ovary, placenta, and testis, as well as discuss the link between vaspin and pathologies connected with hormonal imbalance.


2021 ◽  
Vol 22 (15) ◽  
pp. 7975
Author(s):  
Saioa Gómez-Zorita ◽  
Iñaki Milton-Laskibar ◽  
Laura García-Arellano ◽  
Marcela González ◽  
María P. Portillo

The present review is aimed at analysing the current evidence concerning the potential modulation of obesity and/or diet in adipose tissue ACE2. Additionally, the potential implications of these effects on COVID-19 are also addressed. The results published show that diet and obesity are two factors that effectively influence the expression of Ace2 gene in adipose tissue. However, the shifts in this gene do not always occur in the same direction, nor with the same intensity. Additionally, there is no consensus regarding the implications of increased adipose tissue ACE2 expression in health. Thus, while in some studies a protective role is attributed to ACE2 overexpression, other studies suggest otherwise. Similarly, there is much debate regarding the role played by ACE2 in COVID-19 in terms of degree of infection and disease outcomes. The greater risk of infection that may hypothetically derive from enhanced ACE2 expression is not clear since the functionality of the enzyme seems to be as important as the abundance. Thus, the greater abundance of ACE2 in adipose tissue of obese subjects may be counterbalanced by its lower activation. In addition, a protective role of ACE2 overexpression has also been suggested, associated with the increase in anti-inflammatory factors that it may produce.


Children ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 288
Author(s):  
Wojciech Rusek ◽  
Joanna Baran ◽  
Justyna Leszczak ◽  
Marzena Adamczyk ◽  
Rafał Baran ◽  
...  

The main goal of our study was to determine how the age of children, puberty and anthropometric parameters affect the formation of body composition and faulty body posture development in children. The secondary goal was to determine in which body segments abnormalities most often occur and how gender differentiates the occurrence of adverse changes in children’s body posture and body composition during puberty. The study group consisted of 464 schoolchildren aged from 6–16. Body posture was assessed with the Zebris system. The composition of the body mass was tested with Tanita MC 780 MA body mass analyzer and the body height was measured using a portable stadiometer PORTSTAND 210. The participants were further divided due to the age of puberty. Tanner division was adopted. The cut-off age for girls is ≥10 years and for boys it is ≥12 years. The analyses applied descriptive statistics, the Pearson correlation, stepwise regression analysis and the t-test. The accepted level of significance was p < 0.05. The pelvic obliquity was lower in older children (beta = −0.15). We also see that age played a significant role in the difference in the height of the right pelvis (beta = −0.28), and the difference in the height of the right shoulder (beta = 0.23). Regression analysis showed that the content of adipose tissue (FAT%) increased with body mass index (BMI) and decreased with increasing weight, age, and height. Moreover, the FAT% was lower in boys than in girls (beta negative equal to −0.39). It turned out that older children (puberty), had greater asymmetry in the right shoulder blade (p < 0.001) and right shoulder (p = 0.003). On the other hand, younger children (who were still before puberty) had greater anomalies in the left trunk inclination (p = 0.048) as well as in the pelvic obliquity (p = 0.008). Girls in puberty were characterized by greater asymmetry on the right side, including the shoulders (p = 0.001), the scapula (p = 0.001) and the pelvis (p < 0.001). In boys, the problem related only to the asymmetry of the shoulder blades (p < 0.001). Girls were characterized by a greater increase in adipose tissue and boys by muscle tissue. Significant differences also appeared in the body posture of the examined children. Greater asymmetry within scapulas and shoulders were seen in children during puberty. Therefore, a growing child should be closely monitored to protect them from the adverse consequences of poor posture or excessive accumulation of adipose tissue in the body.


Sign in / Sign up

Export Citation Format

Share Document