scholarly journals Miscanthus Grass as a Nutritional Fiber Source for Monogastric Animals

2021 ◽  
Author(s):  
Renan Donadelli ◽  
Greg Aldrich

While fiber is not an indispensable nutrient for monogastric animals, it has benefits such as promoting gastrointestinal motility and production of short chain fatty acids through fermentation. Miscanthus x giganteus is a hybrid grass used as an ornamental plant, biomass for energy production, construction material, and as a cellulose source for paper production. More recently Miscanthus grass (dried ground Miscanthus x giganteus) was evaluated for its fiber composition and as a fiber source for poultry (broiler chicks) and pets (dogs and cats). As a fiber source, this ingredient is mostly composed of insoluble fiber (78.6%) with an appreciable amount of lignin (13.0%). When added at moderate levels to broiler chick feed (3% inclusion) Miscanthus grass improved dietary energy utilization. However, when fed to dogs at a 10% inclusion Miscanthus grass decreased dry matter, organic matter, and gross energy digestibility, and increased dietary protein digestibility compared to dogs fed diets containing similar concentrations of beet pulp. Comparable results were reported for cats. In addition, when Miscanthus grass was fed to cats to aid in hairball management, it decreased the total hair weight per dry fecal weight. When considering the effects Miscanthus grass has on extruded pet foods, it behaves in a similar manner to cellulose, decreasing radial expansion, and increasing energy to compress the kibbles, likely because of changes in kibble structure. To date, Miscanthus grass has not been evaluated in human foods and supplements though it may have applications similar to those identified for pets.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1432
Author(s):  
Alip Kumar ◽  
Sarbast K. Kheravii ◽  
Lily Li ◽  
Shu-Biao Wu

This study evaluated the potential of monoglyceride blend (MG) and buffered formic acid (FA) as alternatives to antibiotics in the performance and intestinal health of broilers under clinical necrotic enteritis (NE) challenge. A total of 544 as-hatched Ross 308 broiler chicks were randomly distributed to 32-floor pens housing 17 birds per pen. The four treatments were: NC—non-additive control; ZBS—antibiotic group supplemented with zinc bacitracin and salinomycin; MG—additive MG supplementation in the starter phase only; and MGFA—additive MG in starter phase and FA in grower and finisher phases. All birds were challenged with Eimeria spp. and Clostridium perfringens. Results showed that the NC group had lower BWG and higher FCR than the ZBS group in the grower and overall period (p < 0.05). The NC group had higher NE-caused mortality (days 14 to 17) than the ZBS group (p < 0.05). Birds fed MG had lower NE-caused mortality than the NC group (p < 0.05). Birds fed MG had upregulated jejunal tight junction protein1 (TJP1) and immunoglobulin (IgG) on day 16 and improved gross energy digestibility on day 24 than the NC group (p < 0.05). These findings suggest that supplementation of MG may improve intestinal health and protect birds from clinical NE occurrence.


2021 ◽  
Vol 99 (9) ◽  
Author(s):  
Takele Feyera ◽  
Liang Hu ◽  
Maria Eskildsen ◽  
Thomas S Bruun ◽  
Peter K Theil

Abstract This study aimed to investigate the impact of dietary fiber (DF) sources on sow and litter performance, and apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients. A total of 48 sows were stratified for body weight at mating and randomly assigned to one of four DF sources (mixed fiber [MF], palm kernel expellers [PKE], sugar beet pulp [SBP], or soy hulls [SH]) and fed the diet from mating until farrowing. Within DF treatments, sows were supplemented with one of two extra energy sources (glycerol or sugar dissolved in water), whereas a third group (control) received water from day 108 of gestation until farrowing. The number of total born, live-born, and stillborn pigs; birth time and birth weight of the pigs; farrowing duration; and farrowing assistance (FA) were recorded. Live-born pigs were weighed again at 12 and 24 h after birth to record weight gain, which was used to estimate intake and yield of colostrum. Blood samples were collected once daily from day −3 relative to farrowing until day 1 after farrowing in sows and once from selected pigs right after birth. Fecal samples were collected on day 114 of gestation and colostrum at 0, 12, 24, and 36 h after onset of farrowing. Intake of soluble and insoluble nonstarch polysaccharides (NSP) was greater for SBP (P &lt; 0.001) and PKE (P &lt; 0.001) supplemented sows, respectively, when compared with other groups. Farrowing duration and stillbirth rate were not affected by DF sources, but PKE and SH supplemented sows had greater FA than SBP and MF supplemented sows (P &lt; 0.001). Extra energy supplement did not improve the farrowing performance. Concentration (P = 0.02) and output (P = 0.04) of dry matter in colostrum, and ATTD of GE (P &lt; 0.001) and crude protein (CP; P &lt; 0.001) were lower for PKE supplemented sows than in sows from the remaining groups. Intake of insoluble NSP correlated negatively with ATTD of GE (P &lt; 0.001) and CP (P &lt; 0.001). Concentrations of glucose (P &lt; 0.001), lactate (P &lt; 0.001), CO2 (P &lt; 0.001), and HCO3 (P &lt; 0.001) in sows blood were increased with time progress relative to farrowing. Newborn pigs from PKE supplemented sows had greater concentration of lactate (P = 0.02) and lower blood pH (P = 0.02) than the remaining treatments. In conclusion, PKE supplement reduced ATTD of GE and CP, and concentration and output of dry matter in colostrum but increased FA. Results of this experiment indicated that the use of PKE as a fiber source for late gestating sows should be avoided.


2020 ◽  
Vol 34 (1) ◽  
pp. 73-81
Author(s):  
Jung Yeol Sung ◽  
Bokyung Hong ◽  
Youngeun Song ◽  
Beob Gyun Kim

Background: Soybean milk by-product (SMBP) is a potential alternative feed ingredient in swine diets due to its high protein content. However, information on energy and nutritional values of SMBP used as swine feed ingredient is limited. Objective: To estimate energy values and protein digestibility of SMBP in pigs based on in vitro assays. Methods: Four SMBP samples were obtained from 3 soybean milk-producing facilities. In vitro total tract disappearance (IVTTD) and in vitro ileal disappearance (IVID) of dry matter (DM) in the SMBP samples were determined. In vitro ileal disappearance of crude protein was determined by analyzing crude protein content in undigested residues after determining IVID of DM. Digestible and metabolizable energy of SMBP were estimated using gross energy, IVTTD of DM, and prediction equations. Results: Sample 4 had greater IVTTD of DM than that of sample 3 (97.7 vs. 94.4%, p<0.05), whereas IVID of DM in sample 4 was lower compared with sample 1 (53.5 vs. 65.0%, p<0.05). In vitro ileal disappearance of crude protein in sample 2 was greater than that in sample 1 and 3 (92.6 vs. 90.6 and 90.1%; p<0.05). The estimated metabolizable energy of SMBP ranged from 4,311 to 4,619 kcal/kg as-is basis and the value of sample 3 was the least (p<0.05) among SMBP samples. Conclusion: Energy values and protein digestibility should be determined before using SMBP in swine diets.


2017 ◽  
Vol 17 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Marianna Flis ◽  
Wiesław Sobotka ◽  
Zofia Antoszkiewicz

Abstract The present review summarizes the results of 37 experiments in which different types and levels (from 0.5 to 29.7%) of fibrous supplements were used in the formulation of diets for weaned piglets. Diets were supplemented with different sources of insoluble dietary fiber (iDF), soluble dietary fiber (sDF), or mixed DF sources. Most of the applied DF sources decreased the ileal and fecal organic matter digestibility, and they often lowered crude protein digestibility. A moderate addition (1.5-8%) of iDF sources increased average daily feed intake (ADFI) and, frequently, average daily gains (ADG). Sources of sDF as well as high inclusion levels of fiber-rich feeds tended to decrease ADFI and ADG. Improved fecal consistency, decreased diarrhea incidence and antibiotic interventions were confirmed in piglets fed diets with added lignocellulose, cooked or raw oat hulls and wheat bran. The dietary inclusion of iDF rather than sDF sources improved gastrointestinal tract (GIT) development, enzyme activity and gut morphology. An increase in the counts of beneficial gut microbiota and the concentrations of short-chain fatty acids was stimulated by diets with addition iDF or sDF sources. Such diets also slowed down proteolytic fermentation which negatively affects the colonic mucosa. Some research findings indicate that iDF sources improve intestinal barrier function. The analyzed experimental data suggest that the addition of 1.5-2% of a lignocellulose preparation, 2% of oat hulls, 4-8% of coarse wheat bran to diets for weaned piglets may be recommended to promote GIT development and health, and to improve growth performance.


1999 ◽  
Vol 132 (4) ◽  
pp. 483-490 ◽  
Author(s):  
C. P. FERRIS ◽  
F. J. GORDON ◽  
D. C. PATTERSON ◽  
M. G. PORTER ◽  
T. YAN

Sixty Holstein/Friesian dairy cows, 28 of high genetic merit and 32 of medium genetic merit, were used in a continuous design, 2 (cow genotypes)×4 (concentrate proportion in diet) factorial experiment. High and medium merit animals had Predicted Transmitting Abilities for milk fat plus protein yield, calculated using 1995 as the base year (PTA95 fat plus protein), of 43·3 kg and 1·0 kg respectively. Concentrate proportions in the diet were 0·37, 0·48, 0·59 and 0·70 of total dry matter (DM), with the remainder of the diet being grass silage. During this milk production trial, 24 of these animals, 12 from each genetic merit, representing three animals from each concentrate treatment, were subject to ration digestibility, and nitrogen and energy utilization studies. In addition, the efficiency of energy utilization during the milk production trial was calculated.There were no genotype×concentrate level interactions for any of the variables measured (P>0·05). Neither genetic merit nor concentrate proportion in the diet influenced the digestibility of either the DM or energy components of the ration (P>0·05). When expressed as a proportion of nitrogen intake, medium merit cows exhibited a higher urinary nitrogen output and a lower milk nitrogen output than the high merit cows. Methane energy output, when expressed as a proportion of gross energy intake, was higher for the medium than high merit cows (P<0·05), while urinary energy output tended to decrease with increasing proportion of concentrate in the diet (P<0·05). In the calorimetric studies, neither heat energy production, milk energy output and energy retained, when expressed as a proportion of metabolizable energy intake, nor the efficiency of lactation (kl), were affected by either cow genotype or concentrate proportion in the diet (P>0·05). However when kl was calculated using the production data from the milk production trial the high merit cows were found to have significantly higher kl values than the medium merit cows (0·64 v. 0·59, P<0·05) while k l tended to fall with increasing proportion of concentrate in the ration (P<0·05). However in view of the many assumptions which were used in these latter calculations, a cautious interpretation is required.


1999 ◽  
Vol 50 (5) ◽  
pp. 871 ◽  
Author(s):  
Paul J. Moughan

The philosophy inherent in developing in vitro digestibility assays for dietary energy and protein is reviewed and an historical account is given of the development of such assays for the pig. General principles to be considered in the development of in vitro digestibility assays are discussed, as are limitations of the in vitro approach. The importance of choosing the most appropriate in vivo measures of digestibility for the evaluation of in vitro assays is stressed. For protein sources that do not contain anti-nutritional factors or plant fibre, ‘true’ ileal digestibility should be the in vivo baseline, while plant proteins should be tested against ‘real’ ileal digestibility. There is a dearth of adequately conducted validation studies for in vitro digestibility assays. It appears that the 3-step (pepsin, pancreatin, Viscozyme) closed in vitro system to allow prediction of organic matter and gross energy digestibility in the pig has particular promise for practical feed evaluation. Similarly based protein digestibility assays may require further development before they can be applied with confidence.


1989 ◽  
Vol 68 (12) ◽  
pp. 1612-1618 ◽  
Author(s):  
Y. PINCHASOV ◽  
L.S. JENSEN

2020 ◽  
Vol 8 (1) ◽  
pp. 52-58
Author(s):  
Nicolas Gomgom Tua Marbun

This study aims to determine the efficient use of protein and energy of Black Soldier fly larvae at different age levels on chicken. This research was conducted at Jl. RK, Desa Namo Bitang, Kecamatan Pancur Batu Kabupaten Deli Serdang, North Sumatra. Animal Husbandary Study Program, Faculty of Agriculture, Universitas Sumatra Utara, Medan. The design of this study was a completely randomized design (CRD) with 4 treatments and 5 replications. The treatment consisted of P0, P1, P2, and P3 (larvae 14, 21, 28, and 35 days old). Observed variables were protein digestibility, nitrogen retention and apparent metabolizable energy.The results showed that the treatment had a significant effect (P<0,01) on protein digestibility, nitrogen retention and apparent metabolizable energy. Based on research result it can be concluded that maggot of Black soldier fly more efficient at the age between 24-25 days.


Author(s):  
Tania Chroumpi ◽  
Mao Peng ◽  
Lye Meng Markillie ◽  
Hugh D. Mitchell ◽  
Carrie D. Nicora ◽  
...  

The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, ΔlarAΔxyrAΔxyrB, ΔladAΔxdhAΔsdhA and ΔxkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.


Sign in / Sign up

Export Citation Format

Share Document